1
|
Nwaduru C, Ovalle LA, Hoareau GL, Baker E, Buff M, Selim M, Baker TB, Zimmerman MA. Ectonucleotidases in Ischemia Reperfusion Injury: Unravelling the Interplay With Mitochondrial Dysfunction in Liver Transplantation. Transplant Proc 2024; 56:1598-1606. [PMID: 39183080 DOI: 10.1016/j.transproceed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) profoundly impacts organ transplantation, especially in orthotopic liver transplantation (OLT). Disruption of the mitochondrial respiratory chain during ischemia leads to ATP loss and ROS production. Reperfusion exacerbates mitochondrial damage, triggering the release of damage-associated molecular patterns (DAMPs) and inflammatory responses. Mitochondrial dysfunction, a pivotal aspect of IRI, is explored in the context of the regulatory role of ectonucleotidases in purinergic signaling and immune responses. CD39, by hydrolyzing ATP and ADP; and CD73, by converting AMP to adenosine, emerge as key players in mitigating liver IRI, particularly through ischemic preconditioning and adenosine receptor signaling. Despite established roles in vascular health and immunity, the impact of ectonucleotidases on mitochondrial function during hepatic IRI is unclear. This review aims to elucidate the interplay between CD39/73 and mitochondria, emphasizing their potential as therapeutic targets for liver transplantation. This article explores the role of CD39/73 in tissue hypoxia, emphasizing adenosine production during inflammation. CD39 and CD73 upregulation under hypoxic conditions regulate immune responses, demonstrating protective effects in various organ-specific ischemic models. However, prolonged adenosine activation may have dual effects, beneficial in acute settings but detrimental in chronic hypoxia. Herein, we raise questions about ectonucleotidases influencing mitochondrial function during hepatic IRI, drawing parallels with cancer cell responses to chemotherapy. The review underscores the need for comprehensive research into the intricate interplay between ectonucleotidases, mitochondrial dynamics, and their therapeutic implications in hepatic IRI, providing valuable insights for advancing transplantation outcomes.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guillaume L Hoareau
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
2
|
Umpierre AD, Li B, Ayasoufi K, Simon WL, Zhao S, Xie M, Thyen G, Hur B, Zheng J, Liang Y, Bosco DB, Maynes MA, Wu Z, Yu X, Sung J, Johnson AJ, Li Y, Wu LJ. Microglial P2Y 6 calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. Neuron 2024; 112:1959-1977.e10. [PMID: 38614103 PMCID: PMC11189754 DOI: 10.1016/j.neuron.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/09/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.
Collapse
Affiliation(s)
| | - Bohan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | | | - Whitney L Simon
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grace Thyen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Hur
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Liang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A Maynes
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaeyun Sung
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Aaron J Johnson
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Olatunji LA, Badmus OO, Abdullahi KO, Usman TO, ologe M, Adejare A. Depletion of hepatic glutathione and adenosine by glucocorticoid exposure in Wistar rats is pregnancy-independent. Toxicol Rep 2024; 12:485-491. [PMID: 38741615 PMCID: PMC11090063 DOI: 10.1016/j.toxrep.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Liver diseases have gained increasing attention due to their substantial impact on health, independently as well as in association with cardio-metabolic disorders. Studies have suggested that glutathione and adenosine assist in providing protection against oxidative stress and inflammation while glucocorticoid (GC) therapy has been associated with chronic inflammatory disorders, even in pregnancy. The implications of Glucocorticoid exposure on maternal health and fetal growth is a concern, however, the possible role of glutathione and adenosine has not been thoroughly investigated. The study therefore hypothesize that exposure to glucocorticoids leads to depletion of hepatic glutathione and adenosine levels, contributing to oxidative stress and tissue injury. Additionally, we aim to investigate whether the effects of glucocorticoids on hepatic health are pregnancy dependent in female rats. Twelve Pregnant and twelve age-matched non-pregnant rats were used for this study; an exogenous administration of glucocorticoid (Dex: 0.2 mg/kg) or vehicle (po) was administered to six pregnant and six non-pregnant rats from gestational day 14 to 19 or for a period of 6 days respectively. Data obtained showed that GC exposure led to a decrease in hepatic glucose-6-phosphate dehydrogenase, glutathione peroxidase, GSH/GSSG ratio and adenosine content in both pregnant and non-pregnant rats. In addition, increased activities of adenosine deaminase and xanthine oxidase, along with increased production of uric acid and increased levels of lactate dehydrogenase, aspartate aminotransferase, alanine transferase, alkaline phosphatase and gamma-glutamyl transferase were observed. In summary, the study indicates that GC-induced liver damage is underlined by depleted hepatic adenosine and glutathione levels as well as elevated markers of tissue inflammation and/or injury. Furthermore, the findings suggest that the effects of GC exposure on hepatic health are pregnancy independent.
Collapse
Affiliation(s)
- Lawrence A. Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olufunto O. Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kamaldeen O. Abdullahi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Taofeek O. Usman
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Mary ologe
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
4
|
Stryjak I, Warmuzińska N, Łuczykowski K, Jaroch K, Urbanellis P, Selzner M, Bojko B. Metabolomic and lipidomic landscape of porcine kidney associated with kidney perfusion in heart beating donors and donors after cardiac death. Transl Res 2024; 267:79-90. [PMID: 38052298 DOI: 10.1016/j.trsl.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/23/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Transplant centers are currently facing a lack of tools to ensure adequate evaluation of the quality of the available organs, as well as a significant shortage of kidney donors. Therefore, efforts are being made to facilitate the effective use of available organs and expand the donor pool, particularly with expanded criteria donors. Fulfilling a need, we aim to present an innovative analytical method based on solid-phase microextraction (SPME) - chemical biopsy. In order to track changes affecting the organ throughout the entire transplant procedure, porcine kidneys were subjected to multiple samplings at various time points. The application of small-diameter SPME probes assured the minimal invasiveness of the procedure. Porcine model kidney autotransplantation was executed for the purpose of simulating two types of donor scenarios: donors with a beating heart (HBD) and donors after cardiac death (DCD). All renal grafts were exposed to continuous normothermic ex vivo perfusion. Following metabolomic and lipidomic profiling using high-performance liquid chromatography coupled to a mass spectrometer, we observed differences in the profiles of HBD and DCD kidneys. The alterations were predominantly related to energy and glucose metabolism, and differences in the levels of essential amino acids, purine nucleosides, lysophosphocholines, phosphoethanolamines, and triacylglycerols were noticed. Our results indicate the potential of implementing chemical biopsy in the evaluation of graft quality and monitoring of renal function during perfusion.
Collapse
Affiliation(s)
- Iga Stryjak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Natalia Warmuzińska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Peter Urbanellis
- Ajmera Transplant Center, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Center, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| |
Collapse
|
5
|
Zhao W, Li M, Song S, Zhi Y, Huan C, Lv G. The role of natural killer T cells in liver transplantation. Front Cell Dev Biol 2024; 11:1274361. [PMID: 38250325 PMCID: PMC10796773 DOI: 10.3389/fcell.2023.1274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Natural killer T cells (NKTs) are innate-like lymphocytes that are abundant in the liver and participate in liver immunity. NKT cells express both NK cell and T cell markers, modulate innate and adaptive immune responses. Type I and Type II NKT cells are classified according to the TCR usage, while they recognize lipid antigen in a non-classical major histocompatibility (MHC) molecule CD1d-restricted manner. Once activated, NKT cells can quickly produce cytokines and chemokines to negatively or positively regulate the immune responses, depending on the different NKT subsets. In liver transplantation (LTx), the immune reactions in a series of processes determine the recipients' long-term survival, including ischemia-reperfusion injury, alloresponse, and post-transplant infection. This review provides insight into the research on NKT cells subpopulations in LTx immunity during different processes, and discusses the shortcomings of the current research on NKT cells. Additionally, the CD56-expressing T cells are recognized as a NK-like T cell population, they were also discussed during these processes.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Nwaduru C, Baker E, Buff M, Selim M, Ovalle LA, Baker TB, Zimmerman MA. Assessing Liver Viability: Insights From Mitochondrial Bioenergetics in Ischemia-Reperfusion Injury. Transplant Proc 2024; 56:228-235. [PMID: 38171992 DOI: 10.1016/j.transproceed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Orthotopic liver transplantation remains the definitive treatment for patients with end-stage liver disease. Unfortunately, the increasing demand for donor livers and the limited supply of viable organs have both led to a critical need for innovative strategies to expand the pool of transplantable organs. The mitochondrion, central to hepatic cellular function, plays a pivotal role in hepatic ischemic injury, with impaired mitochondrial function and oxidative stress leading to cell death. Mitochondrial protection strategies have shown promise in mitigating IRI and resuscitating marginal organs for transplant. Machine perfusion (MP) has been proven a valuable tool for reviving marginal organs with very promising results. Evaluation of liver viability during perfusion traditionally relies on parameters including lactate clearance, bile production, and transaminase levels. Nevertheless, the quest for more comprehensive and universally applicable viability markers persists. Normothermic regional perfusion has gained robust attention, offering extended recovery time for organs from donation after cardiac death donors. This approach has shown remarkable success in improving organ quality and reducing ischemic injury using the body's physiological conditions. The current challenge lies in the absence of a reliable assessment tool for predicting graft viability and post-transplant outcomes. To address this, exploring insights from mitochondrial function in the context of ischemia-reperfusion injury could offer a promising path toward better patient outcomes and graft longevity. Indeed, hypoxia-induced mitochondrial injury may serve as a surrogate marker of organ viability following oxygenated resuscitation techniques in the future.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
7
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Yuan Z, Ye L, Feng X, Zhou T, Zhou Y, Zhu S, Jia C, Li H, Qiu D, Li K, Liu W, Li Y, Tang H, Wang G, Zhang Q, Yang Y, Chen G, Li H. YAP-Dependent Induction of CD47-Enriched Extracellular Vesicles Inhibits Dendritic Cell Activation and Ameliorates Hepatic Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617345. [PMID: 34239692 PMCID: PMC8241504 DOI: 10.1155/2021/6617345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is the most common cause of liver damage leading to surgical failures in hepatectomy and liver transplantation. Extensive inflammatory reactions and oxidative responses are reported to be the major processes exacerbating IRI. The involvement of Yes-associated protein (YAP) in either process has been suggested, but the role and mechanism of YAP in IRI remain unclear. In this study, we constructed hepatocyte-specific YAP knockout (YAP-HKO) mice and induced a hepatic IRI model. Surprisingly, the amount of serum EVs decreased in YAP-HKO compared to WT mice during hepatic IRI. Then, we found that the activation of YAP increased EV secretion through F-actin by increasing membrane formation, while inhibiting the fusion of multivesicular body (MVB) and lysosomes in hepatocytes. Further, to explore the essential elements of YAP-induced EVs, we applied mass spectrometry and noticed CD47 was among the top targets highly expressed on hepatocyte-derived EVs. Thus, we enriched CD47+ EVs by microbeads and applied the isolated CD47+ EVs on IRI mice. We found ameliorated IRI symptoms after CD47+ EV treatment in these mice, and CD47+ EVs bound to CD172α on the surface of dendritic cells (DCs), which inhibited DC activation and the cascade of inflammatory responses. Our data showed that CD47-enriched EVs were released in a YAP-dependent manner by hepatocytes, which could inhibit DC activation and contribute to the amelioration of hepatic IRI. CD47+ EVs could be a potential strategy for treating hepatic IRI.
Collapse
Affiliation(s)
- Zenan Yuan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhou
- Department of General Surgery, Guangdong No.2 Provincial People's Hospital, Guangdong Province, China
| | - Shuguang Zhu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Dongbo Qiu
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Hui Tang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guoying Wang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
9
|
Baidya R, Crawford DHG, Gautheron J, Wang H, Bridle KR. Necroptosis in Hepatosteatotic Ischaemia-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21165931. [PMID: 32824744 PMCID: PMC7460692 DOI: 10.3390/ijms21165931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While liver transplantation remains the sole treatment option for patients with end-stage liver disease, there are numerous limitations to liver transplantation including the scarcity of donor livers and a rise in livers that are unsuitable to transplant such as those with excess steatosis. Fatty livers are susceptible to ischaemia-reperfusion (IR) injury during transplantation and IR injury results in primary graft non-function, graft failure and mortality. Recent studies have described new cell death pathways which differ from the traditional apoptotic pathway. Necroptosis, a regulated form of cell death, has been associated with hepatic IR injury. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be instrumental in the execution of necroptosis. The study of hepatic necroptosis and potential therapeutic approaches to attenuate IR injury will be a key factor in improving our knowledge regarding liver transplantation with fatty donor livers. In this review, we focus on the effect of hepatic steatosis during liver transplantation as well as molecular mechanisms of necroptosis and its involvement during liver IR injury. We also discuss the immune responses triggered during necroptosis and examine the utility of necroptosis inhibitors as potential therapeutic approaches to alleviate IR injury.
Collapse
Affiliation(s)
- Raji Baidya
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
| | - Jérémie Gautheron
- Sorbonne University, Inserm, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France;
- Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Haolu Wang
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Diamantina Institute, The University of Queensland, Brisbane, Queensland QLD 4102, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland QLD 4006, Australia; (R.B.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Brisbane, Queensland QLD 4120, Australia;
- Correspondence: ; Tel.: +61-7-3346-0698
| |
Collapse
|
10
|
Xu J, Hassan-Ally M, Casas-Ferreira AM, Suvitaival T, Ma Y, Vilca-Melendez H, Rela M, Heaton N, Jassem W, Legido-Quigley C. Deregulation of the Purine Pathway in Pre-Transplant Liver Biopsies Is Associated with Graft Function and Survival after Transplantation. J Clin Med 2020; 9:jcm9030711. [PMID: 32151072 PMCID: PMC7141328 DOI: 10.3390/jcm9030711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
The current shortage of livers for transplantation has increased the use of marginal organs sourced from donation after circulatory death (DCD). However, these organs have a higher incidence of graft failure, and pre-transplant biomarkers which predict graft function and survival remain limited. Here, we aimed to find biomarkers of liver function before transplantation to allow better clinical evaluation. Matched pre- and post-transplant liver biopsies from DCD (n = 24) and donation after brain death (DBD, n = 70) were collected. Liver biopsies were analysed using mass spectroscopy molecular phenotyping. Discrimination analysis was used to parse metabolites differentiated between the two groups. Five metabolites in the purine pathway were investigated. Of these, the ratios of the levels of four metabolites to those of urate differed between DBD and DCD biopsies at the pre-transplantation stage (q < 0.05). The ratios of Adenosine monophosphate (AMP) and adenine levels to those of urate also differed in biopsies from recipients experiencing early graft function (EGF) (q < 0.05) compared to those of recipients experiencing early allograft dysfunction (EAD). Using random forest, a panel consisting of alanine aminotransferase (ALT) and the ratios of AMP, adenine, and hypoxanthine levels to urate levels predicted EGF with area under the curve (AUC) of 0.84 (95% CI (0.71, 0.97)). Survival analysis revealed that the metabolite classifier could stratify six-year survival outcomes (p = 0.0073). At the pre-transplantation stage, a panel composed of purine metabolites and ALT could improve the prediction of EGF and survival.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (J.X.); (M.H.-A.); (A.M.C.-F.)
| | - Mohammad Hassan-Ally
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (J.X.); (M.H.-A.); (A.M.C.-F.)
| | - Ana María Casas-Ferreira
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (J.X.); (M.H.-A.); (A.M.C.-F.)
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain
| | | | - Yun Ma
- Institute of Liver Studies, King’s College Hospital, King’s College London, London SE5 9RS, UK; (Y.M.); (H.V.-M.); (M.R.); (N.H.)
| | - Hector Vilca-Melendez
- Institute of Liver Studies, King’s College Hospital, King’s College London, London SE5 9RS, UK; (Y.M.); (H.V.-M.); (M.R.); (N.H.)
| | - Mohamed Rela
- Institute of Liver Studies, King’s College Hospital, King’s College London, London SE5 9RS, UK; (Y.M.); (H.V.-M.); (M.R.); (N.H.)
| | - Nigel Heaton
- Institute of Liver Studies, King’s College Hospital, King’s College London, London SE5 9RS, UK; (Y.M.); (H.V.-M.); (M.R.); (N.H.)
| | - Wayel Jassem
- Institute of Liver Studies, King’s College Hospital, King’s College London, London SE5 9RS, UK; (Y.M.); (H.V.-M.); (M.R.); (N.H.)
- Correspondence: (W.J.); (C.L.-Q.)
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (J.X.); (M.H.-A.); (A.M.C.-F.)
- Steno Diabetes Center Copenhagen, DK-2800 Gentofte, Denmark;
- Correspondence: (W.J.); (C.L.-Q.)
| |
Collapse
|
11
|
Sousa-Oliveira A, Brandão A, Vojtek M, Gonçalves-Monteiro S, Sousa JB, Diniz C. Vascular impairment of adenosinergic system in hypertension: increased adenosine bioavailability and differential distribution of adenosine receptors and nucleoside transporters. Histochem Cell Biol 2018; 151:407-418. [PMID: 30357508 DOI: 10.1007/s00418-018-1743-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
Abstract
Adenosinergic system regulates vascular tonicity through the complex system of adenosine, adenosine receptors (ARs) and nucleoside transporters. This work aimed at evaluating the impact of hypertension on adenosine bioavailability and expression/distribution profile of AR subtypes (A1, A2A, A2B, A3) and equilibrative nucleoside transporters (ENT1, ENT2, ENT3, ENT4). Adenosine was measured in vascular tissue extracts by HPLC (fluorescence detection); immunoreactivities (ARs/ENTs) in mesenteric arteries/veins from normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were analyzed by histomorphometry. Significantly higher adenosine bioavailability occurred in arteries than in veins. Adenosine bioavailability was even more increased in SHR vessels. Expression/distribution of ARs and ENTs observed in all vascular layers (intima, media, adventitia), with more intensified expression in arteries than in veins. In SHR arteries, a downregulation of all ENT along with downregulated and punctuated distribution of A1 and A2B receptors occurred comparatively to WKY arteries. By contrast, expressions of ARs and ENTs were unaltered, exception for an A2A receptor upregulation, and ENT2 downregulation in SHR veins relatively to WKY veins. Our data evidenced clear alterations of adenosinergic dynamics occurring in hypertension, particularly in arterial vessels. An increased adenosine bioavailability was observed, for the first time, in hypertensive vascular tissues.
Collapse
Affiliation(s)
- Ana Sousa-Oliveira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-047, Porto, Portugal
| | - Ana Brandão
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-047, Porto, Portugal
| | - Martin Vojtek
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-047, Porto, Portugal
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | - Joana B Sousa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-047, Porto, Portugal
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-047, Porto, Portugal.
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Saini S, Vats P, Bayen S, Gaur P, Ray K, Kishore K, Sartmyrzaeva M, Akunov A, Maripov A, Sarybaev A, Kumar B, Singh SB. Global expression profiling and pathway analysis in two different population groups in relation to high altitude. Funct Integr Genomics 2018; 19:205-215. [PMID: 30341547 DOI: 10.1007/s10142-018-0637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Abstract
High altitude (HA) is associated with number of stresses. Response of these stresses may vary in different populations depending upon altitude, duration of residency, ancestry, geographical variation, lifestyle, and ethnicities. For understanding population variability in transcriptome, array-based global gene expression profiling was performed on extracted RNA of male volunteers of two different lowland population groups, i.e., Indians and Kyrgyz, at baseline and day 7 of HA exposure (3200 m). A total of 97 genes were differentially expressed at basal in Kyrgyz as compared to Indians (82 downregulated and 15 upregulated), and 196 were differentially expressed on day 7 of HA (118 downregulated and 78 upregulated). Ingenuity Pathway Analysis and gene ontology highlighted eIF2 signaling with most significant negative activation z score at basal in Kyrgyz compared to Indians with downregulation of various L- and S-ribosomal proteins indicating marked translational repression. On day 7, cAMP-mediated signaling is most enriched with positive activation z score in Kyrgyz compared to Indians. Plasma cAMP levels were higher in Kyrgyz on day 7 compared to Indians. Extracellular adenosine levels were elevated in both the groups upon HA, but higher in Kyrgyz compared to Indians. Valedictory qRT-PCR showed upregulation of ADORA2B and CD73 along with downregulation of ENTs in Kyrgyz compared to Indians indicating elevated levels of extracellular nucleotides mainly adenosine and activation of extracellular cAMP-adenosine pathway which as per literature triggers endogenous protective mechanisms under stress conditions like hypoxia. Thus, transcriptome changes at HA are population-specific, and it may be necessary to take care while interposing similar results in different populations.
Collapse
Affiliation(s)
- Supriya Saini
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
- Endocrinology and Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | | | - Priya Gaur
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Koushik Ray
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Krishna Kishore
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Meerim Sartmyrzaeva
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Almaz Akunov
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Abdirashit Maripov
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Akpay Sarybaev
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
13
|
Nakazato PCG, Victorino JP, Fina CF, Mendes KDS, Gomes MCJ, Evora PRB, D’Albuquerque LAC, Castro-e-Silva O. Liver ischemia and reperfusion injury. Pathophysiology and new horizons in preconditioning and therapy. Acta Cir Bras 2018; 33:723-735. [DOI: 10.1590/s0102-865020180080000008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022] Open
|
14
|
Kishore BK, Robson SC, Dwyer KM. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 2018; 14:109-120. [PMID: 29332180 PMCID: PMC5940625 DOI: 10.1007/s11302-017-9596-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to adenosine, largely by CD73, an ecto-5'-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion, ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
Collapse
Affiliation(s)
- Bellamkonda K. Kishore
- Departments of Internal Medicine and Nutrition & Integrative Physiology, and Center on Aging, University of Utah Health, Salt Lake City, UT USA
- Nephrology Research, VA Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT 84148 USA
| | - Simon C. Robson
- Division of Gastroenterology/Hepatology and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220 Australia
| |
Collapse
|
15
|
Zimmerman MA, Martin A, Yee J, Schiller J, Hong JC. Natural Killer T Cells in Liver Ischemia-Reperfusion Injury. J Clin Med 2017; 6:jcm6040041. [PMID: 28368299 PMCID: PMC5406773 DOI: 10.3390/jcm6040041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/10/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
Restoration of blood flow to an ischemic organ results in significant tissue injury. In the field of liver transplantation, ischemia–reperfusion injury (IRI) has proven to be a formidable clinical obstacle. In addition to metabolic stress and inflammation, IRI results in profound graft dysfunction and loss. The severity of IRI further limits the ability to expand the donor pool by using partial grafts and marginal organs. As such, the inflammatory response to reperfusion of the liver continues to be an area of intense investigation. Among the various leukocytes involved in IRI, new insights suggest that natural killer T (NKT) cells may be a central driver of hepatocellular injury. Herein, we examine recent experimental observations that provide a mechanistic link between NKT cell recruitment to liver and post-perfusion tissue injury.
Collapse
Affiliation(s)
- Michael A Zimmerman
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Alicia Martin
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jennifer Yee
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jennifer Schiller
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Histocompatibility and Immunogenetics, Blood Center of Wisconsin, Milwaukee, WI 53201, USA.
| | - Johnny C Hong
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
16
|
Abstract
Insufficient hepatic O2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in the stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to loss of appetite or dietary restriction.
Collapse
Affiliation(s)
- Michael D Wider
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
17
|
Abstract
Insufficient hepatic O2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to the loss of appetite or dietary restriction.
Collapse
Affiliation(s)
- Michael D Wider
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
18
|
Abstract
OBJECTIVES Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. STUDY SELECTION Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. CONCLUSIONS In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Collapse
|
19
|
Karatzas T, Neri AA, Baibaki ME, Dontas IA. Rodent models of hepatic ischemia-reperfusion injury: time and percentage-related pathophysiological mechanisms. J Surg Res 2014; 191:399-412. [PMID: 25033703 DOI: 10.1016/j.jss.2014.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
Ischemia and reperfusion (IR) injury remains one of the major problems in liver surgery and transplantation, which determines the viability of the hepatic tissue after resection and of the grafted organ. This review aims to elucidate the mechanisms involved in IR injury of the liver in rodent experimental studies and the preventative methods and pharmacologic agents that have been applied. Many time- and percentage-related liver IR injury rodent models have been used to examine the pathophysiological mechanisms and the parameters implicated with different morbidity, mortality, and pathology findings. The most preferred experimental rodent model of liver IR is the induction of 70% IR for 45 min, which is associated with almost 100% survival. In this model, plasma levels of several parameters such as alanine transaminase, aspartate aminotransferase, gamma-glutamyltransferase, endothelin-1, malonodialdehyde, tumor necrosis factor α, interleukin 1b, inducible nitric oxide synthase, and caspases are increased. The increase of caspases is associated with the initiation of hepatic cellular apoptosis. The main injuries observed 24 h after reperfusion are nuclear pyknosis, cytoplasmic hypereosinophilia, severe necrosis, and loss of intercellular borders. Both ischemic pre- and post-conditioning preventative methods and pharmacologic agents are successfully applied to alleviate the IR injuries. The selection of the time- and percentage-related liver IR injury rodent model and the potential preventative method should be related to the clinical question being answered.
Collapse
Affiliation(s)
- Theodore Karatzas
- Laboratory of Experimental Surgery and Surgical Research "N. S. Christeas", School of Medicine, University of Athens, Athens, Greece; 2(nd) Department of Propedeutic Surgery, School of Medicine, University of Athens, Athens, Greece
| | - Anna-Aikaterini Neri
- Laboratory of Experimental Surgery and Surgical Research "N. S. Christeas", School of Medicine, University of Athens, Athens, Greece
| | | | - Ismene A Dontas
- Laboratory of Experimental Surgery and Surgical Research "N. S. Christeas", School of Medicine, University of Athens, Athens, Greece; Laboratory for Research of the Musculoskeletal System "T. Garofalidis", School of Medicine, University of Athens, Kifissia, Greece.
| |
Collapse
|