1
|
Cao Y, Sheng S, Zhong Y, Shang J, Jin C, Tan Q, Ping F, Huang W, Liu Y, Li Y. FLRT3 Overexpression Attenuates Ischemia-Reperfusion Induced Vascular Hyperpermeability and Lung Injury Through RND3. Lung 2025; 203:39. [PMID: 40047936 PMCID: PMC11885377 DOI: 10.1007/s00408-025-00791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
PURPOSE Pulmonary ischemia/reperfusion injury (IRI) causes endothelial barrier dysfunction and increased vascular permeability. Fibronectin leucine-rich transmembrane protein-3 (FLRT3) is known to regulate endothelial cell function, but its role in pulmonary IRI remains unexplored. METHODS We established both a mouse lung I/R model and a hypoxia/reoxygenation (H/R) cell culture model using human pulmonary microvascular endothelial cells (HPMECs). The effects of FLRT3 manipulation were assessed through lentiviral-mediated overexpression and knockdown approaches. Lung injury was evaluated by histological analysis, immunohistochemistry, and lung injury scoring. Endothelial barrier function was assessed using transmission electron microscopy, Evans blue extravasation, and endothelial permeability assays. RESULTS FLRT3 expression was predominantly localized in pulmonary endothelial cells and was downregulated following I/R injury. Lentiviral vectors overexpressing FLRT3 (LV-FLRT3, 1 × 109 TU/ml) via tail vein injection before I/R surgery. FLRT3 overexpression effectively protected against lung injury by maintaining vascular integrity and reducing edema formation in I/R-challenged mice. In H/R-treated HPMECs, we identified that FLRT3 protein underwent autophagic-lysosomal degradation. Mechanistically, FLRT3 preserved endothelial barrier function through interaction with Rho family GTPase 3 (RND3), which prevented RhoA pathway-mediated cytoskeletal disruption. FLRT3 overexpression in HPMECs promoted cell migration, maintained cytoskeletal structure, and reduced endothelial hyperpermeability under H/R conditions. Importantly, RND3 knockdown in vivo significantly attenuated FLRT3's protective effects against I/R injury, as evidenced by increased lung injury scores, vascular permeability, and RhoA pathway activation. CONCLUSIONS Our findings reveal FLRT3, a critical regulator of endothelial barrier function during IRI through the RND3-RhoA pathway, is a potential therapeutic target for pulmonary IRI.
Collapse
Affiliation(s)
- Yongmei Cao
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Shiyang Sheng
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Yong Zhong
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiawei Shang
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Cui Jin
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Qin Tan
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Feng Ping
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Weifeng Huang
- Department of Critical Care Medicine, Shanghai Sixth People'S Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 605, Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Yongchao Liu
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China.
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Tenth People'S Hospital, Tongji University School of Medicine, No. 301, Middle Yanchang Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
2
|
Bennett RM, Reilly JP, Diamond JM, Cantu E, Shashaty M, Benvenuto L, Singer JP, Palmer SM, Christie JD, Anderson MR. Body mass index and mortality following primary graft dysfunction: A Lung Transplant Outcomes Group study. JHLT OPEN 2024; 5:100107. [PMID: 40143915 PMCID: PMC11935391 DOI: 10.1016/j.jhlto.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Higher body mass index (BMI) increases the risk of developing primary graft dysfunction (PGD) after lung transplantation; whether BMI is associated with decreased survival after PGD is unknown. We utilized the Lung Transplant Outcomes Group cohort of 1,538 subjects from 2011-2018. We evaluated the association between preoperative BMI and graft survival among subjects with severe PGD using Cox proportional hazards models with linear splines. Models were stratified by center and adjusted for sex, age, Lung Allocation Score, and diagnosis. PGD developed in 383 subjects. Among subjects with PGD, low BMI was associated with increased mortality while high BMI was not associated with differential mortality, compared to normal BMI. Results were similar for 90-day and 1-year survival. While high BMI increases the risk of developing PGD, it does not appear to be associated with survival after PGD. Future work should focus on PGD prevention rather than PGD management in patients with obesity.
Collapse
Affiliation(s)
- Rachel M. Bennett
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P. Reilly
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M. Diamond
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Shashaty
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luke Benvenuto
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Columbia University, New York, New York
| | - Jonathan P. Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Scott M. Palmer
- Department of Medicine, Division of Pulmonary Medicine, Duke University, Durham, North Carolina
| | - Jason D. Christie
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michaela R. Anderson
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Napolioni V, Bianconi F, Potenza R, Carpi FM, Ludovini V, Picciolini M, Tofanetti FR, Bufalari A, Pallotti S, Poggi C, Anile M, Daddi N, Venuta F, Puma F, Vannucci J. Genome-wide expression of the residual lung reacting to experimental Pneumonectomy. BMC Genomics 2021; 22:881. [PMID: 34872491 PMCID: PMC8650537 DOI: 10.1186/s12864-021-08171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background Acute or chronic irreversible respiratory failure may occur in patients undergoing pneumonectomy. Aim of this study was to determine transcriptome expression changes after experimental pneumonectomy in swine model. Experimental left pneumonectomy was performed in five pigs under general anaesthesia. Both the resected and the remaining lung, after 60 post-operative completely uneventful days, underwent genome-wide bulk RNA-Sequencing (RNA-Seq). Results Histological analysis showed dilation of air spaces and rupture of interalveolar septa. In addition, mild inflammation, no fibrosis, radial stretch of the bronchus, strong enlargement of airspaces and thinning of the blood supply were observed. Bioinformatic analyses of bulk RNA-Seq data identified 553 Differentially Expressed Genes (DEGs) at adjusted P-value below 0.001, between pre- and post-pneumonectomy. The top 10 up-regulated DEGs were Edn1, Areg, Havcr2, Gadd45g, Depp1, Cldn4, Atf3, Myc, Gadd45b, Socs3; the top 10 down-regulated DEGs were Obscn, Cdkn2b, ENSSSCG00000015738, Prrt2, Amer1, Flrt3, Efnb2, Tox3, Znf793, Znf365. Leveraging digital cytometry tools, no difference in cellular abundance was found between the two experimental groups, while the analysis of cell type-specific gene expression patterns highlighted a striking predominance of macrophage-specific genes among the DEGs. DAVID-based gene ontology analysis showed a significant enrichment of “Extrinsic apoptotic signaling pathway” (FDR q = 7.60 × 10− 3) and “Response to insulin” (FDR q = 7.60 × 10− 3) genes, along with an enrichment of genes involved as “Negative regulators of DDX58/IFIH1 signaling” (FDR q = 7.50 × 10− 4) found by querying the REACTOME pathway database. Gene network analyses indicated a general dysregulation of gene inter-connections. Conclusion This translational genomics study highlighted the existence both of individual genes, mostly dysregulated in certain cellular populations (e.g., macrophages), and gene-networks involved in pulmonary reaction after left pneumonectomy. Their involvement in lung homeostasis is largely supported by previous studies, carried out both in humans and in other animal models (under homeostatic or disease-related conditions), that adopted candidate-gene approaches. Overall, the present findings represent a preliminary assessment for future, more focused, studies on compensatory lung adaptation, pulmonary regeneration and functional reload. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08171-3.
Collapse
Affiliation(s)
- Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Rossella Potenza
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Francesca R Tofanetti
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Stefano Pallotti
- Genetics and Animal Breeding Group, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Camilla Poggi
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marco Anile
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Niccolò Daddi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
4
|
Dong L, Yin L, Li R, Xu L, Xu Y, Han X, Qi Y. Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation. Eur J Pharmacol 2021; 908:174321. [PMID: 34252440 DOI: 10.1016/j.ejphar.2021.174321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Dioscin showed various pharmacological effects in our previous studies; however, the effects and mechanisms against lung ischemia/reperfusion injury (LI/RI) have not been reported. Hypoxia/reoxygenation (H/R) models were established using A549 and primary AEC-II cells, while LI/RI models were established in rats and mice. The effects of dioscin on oxidative stress, inflammation and apoptosis in vivo and in vitro were investigated. The mechanisms were investigated focus on dioscin regulating FXR/LKB1 signaling pathway. Dioscin improved cell viability and mitochondrial membrane potential, reduced reactive oxygen species level, and inhibited H/R-mediated cell apoptosis. It also significantly decreased the lung wet/dry weight ratio, ameliorated levels of oxidative stress indicators, and enhanced the mitochondrial membrane potential and inhibited cell apoptosis in vivo. The results of mechanism research showed that dioscin activated FXR/LKB1 signals by increasing the expression of p-LKB1 and p-AMPKα, promoting the nuclear translocation of Nrf2, up-regulating the levels of HO-1, NQO1 and GCLC, expressed against oxidative stress. Furthermore, dioscin reduced Cyt C released, decreased the expression levels of Caspase-9 and Caspase-3 during apoptosis. Dioscin suppressed inflammation by inhibiting NF-κB translocation, reducing the expression levels of NF-κB, HMGB1, COX-2, IL-1β, IL-6 and TNF-α. The transfection of FXR or LKB1 siRNA further confirmed that the protective effect of dioscin against LI/RI was attributable to the regulation of FXR/LKB1 signaling pathway. Our research showed that dioscin exhibited potent activity against LI/RI, by adjusting the levels of FXR/LKB1-mediated oxidative stress, apoptosis, and inflammation, and should be considered as a new candidate for treating LI/RI.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Ruomiao Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| |
Collapse
|
5
|
Al-Naamani N, Pan HM, Anderson MR, Torigian DA, Tong Y, Oyster M, Porteous MK, Palmer S, Arcasoy SM, Diamond JM, Udupa JK, Christie JD, Lederer DJ, Kawut SM. Thoracic Visceral Adipose Tissue Area and Pulmonary Hypertension in Lung Transplant Candidates. The Lung Transplant Body Composition Study. Ann Am Thorac Soc 2020; 17:1393-1400. [PMID: 32530703 PMCID: PMC7640728 DOI: 10.1513/annalsats.202003-247oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Rationale: Obesity is associated with an increased risk of pulmonary hypertension (PH); however, regional adipose tissue deposition is heterogeneous with distinct cardiovascular phenotypes.Objectives: To determine the association of body mass index (BMI) and thoracic visceral and subcutaneous adipose tissue areas (VAT and SAT, respectively) with PH in patients with advanced lung disease referred for lung transplantation.Methods: We studied patients undergoing evaluation for lung transplantation at three centers from the Lung Transplant Body Composition Study. PH was defined as mean pulmonary artery pressure >20 mm Hg and pulmonary vascular resistance ≥3 Wood units. VAT and SAT were measured on chest computed tomography and normalized to height squared.Results: One hundred thirty-seven (34%) of 399 patients included in our study had PH. Doubling of thoracic VAT was associated with significantly lower pulmonary vascular resistance (β, -0.24; 95% confidence interval [95% CI], -0.46 to -0.02; P = 0.04), higher pulmonary arterial wedge pressure (β, 0.79; 95% CI, 0.32 to 1.26; P = 0.001), and decreased risk of PH (relative risk, 0.86; 95% CI, 0.74 to 0.99; P = 0.04) after multivariate adjustment. Vaspin levels were higher in patients without PH (median, 101.8 vs. 92.0 pg/ml; P < 0.001) but did not mediate the association between VAT and the risk of PH. SAT and BMI were not independently associated with risk of PH.Conclusions: Lower thoracic VAT was associated with a higher risk of PH in patients with advanced lung disease undergoing evaluation for lung transplantation. The role of adipokines in the pulmonary vascular disease remains to be evaluated.
Collapse
Affiliation(s)
| | | | | | - Drew A. Torigian
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yubing Tong
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Scott Palmer
- Department of Medicine, Duke University, Durham, North Carolina; and
| | - Selim M. Arcasoy
- Department of Medicine, Columbia University Medical Center, New York, New York
| | | | - Jayaram K. Udupa
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - David J. Lederer
- Department of Medicine, Columbia University Medical Center, New York, New York
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | |
Collapse
|
6
|
Yu J, Xu H, Cui J, Chen S, Zhang H, Zou Y, Zhao J, Le S, Jiang L, Chen Z, Liu H, Zhang D, Xia J, Wu J. PLK1 Inhibition alleviates transplant-associated obliterative bronchiolitis by suppressing myofibroblast differentiation. Aging (Albany NY) 2020; 12:11636-11652. [PMID: 32541091 PMCID: PMC7343459 DOI: 10.18632/aging.103330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic allograft dysfunction (CAD) resulting from fibrosis is the major limiting factor for long-term survival of lung transplant patients. Myofibroblasts promote fibrosis in multiple organs, including the lungs. In this study, we identified PLK1 as a promoter of myofibroblast differentiation and investigated the mechanism by which its inhibition alleviates transplant-associated obliterative bronchiolitis (OB) during CAD. High-throughput bioinformatic analyses and experiments using the murine heterotopic tracheal transplantation model revealed that PLK1 is upregulated in grafts undergoing CAD as compared with controls, and that inhibiting PLK1 alleviates OB in vivo. Inhibition of PLK1 in vitro reduced expression of the specific myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and decreased phosphorylation of both MEK and ERK. Importantly, we observed a similar phenomenon in human primary fibroblasts. Our results thus highlight PLK1 as a promising therapeutic target for alleviating transplant-associated OB through suppression of TGF-β1-mediated myofibroblast differentiation.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
7
|
Abstract
Introduction: Lung transplantation remains an important treatment for patients with end stage lung disease. Chronic lung allograft dysfunction (CLAD) remains the greatest limiting factor for long term survival. As the diagnosis of CLAD is based on pulmonary function tests, significant lung injury is required before a diagnosis is feasible, likely when irreversible damage has already occurred. Therefore, research is ongoing for early CLAD recognition, with biomarkers making up a substantial amount of this research.Areas covered: The purpose of this review is to describe available biomarkers, focusing on those which aid in predicting CLAD and distinguishing between different CLAD phenotypes. We describe biomarkers presenting in bronchial alveolar lavage (BAL) as well as circulating in peripheral blood, both of which offer an appealing alternative to lung biopsy.Expert opinion: Development of CLAD involves complex, multiple immune and nonimmune mechanisms. Therefore, evaluation of potential CLAD biomarkers serves a dual purpose: clinically, the goal remains early detection and identification of patients at increased risk. Simultaneously, biomarkers offer insight into the different mechanisms involved in the pathophysiology of CLAD, leading to the development of possible interventions. The ultimate goal is the development of both preventive and early intervention strategies for CLAD to improve the overall survival of our lung transplant recipients.
Collapse
Affiliation(s)
- Osnat Shtraichman
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Pulmonary institute, Rabin Medical Center, Petach Tikva, Israel; Sackler School of Medicine, Tel Aviv, Israel
| | - Joshua M Diamond
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Katsis J, Garrity E. The Use of Gene Expression Profiling in Lung Transplantation. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Anderson MR, Edwin EA, Diamond JM, Ferrante A, Sonett J, D’Ovidio F, Arcasoy S, Cantu E, Christie JD, Lederer DJ. Aryl-Hydrocarbon Receptor Repressor Gene in Primary Graft Dysfunction after Lung Transplantation. Am J Respir Cell Mol Biol 2019; 61:268-271. [PMID: 31368810 PMCID: PMC6670041 DOI: 10.1165/rcmb.2018-0404le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
| | | | | | | | - Joshua Sonett
- Columbia University Medical CenterNew York, New Yorkand
| | | | - Selim Arcasoy
- Columbia University Medical CenterNew York, New Yorkand
| | - Edward Cantu
- University of PennsylvaniaPhiladelphia, Pennsylvania
| | | | | |
Collapse
|
10
|
Sandal S, Charlebois K, Fiore JF, Wright DK, Fortin MC, Feldman LS, Alam A, Weber C. Health Professional-Identified Barriers to Living Donor Kidney Transplantation: A Qualitative Study. Can J Kidney Health Dis 2019; 6:2054358119828389. [PMID: 30792874 PMCID: PMC6376531 DOI: 10.1177/2054358119828389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Living donor kidney transplantation (LDKT) has several advantages over deceased donor kidney transplantation. Yet rates of living donation are declining in Canada and there exists significant interprovincial variability. Efforts to improve living donation tend to focus on the patient and barriers identified at their level, such as not knowing how to ask for a kidney or lack of education. These efforts favor those who have the means and the support to find living donors. Thus, a Canadian Institutes of Health Research (CIHR)-organized workshop recommended that education efforts to understand and remove barriers should focus on health professionals (HPs). Despite this, little attention has been paid to what they identify as barriers to discussing LDKT with their patients. OBJECTIVE Our aim was to explore HP-identified barriers to discuss living donation with patients in 3 provinces of Canada with low (Quebec), moderate (Ontario), and high (British Columbia) rates of LDKT. DESIGN This study consists of an interpretive descriptive approach as it enables to move beyond description and inform clinical practice. SETTING Purposive criterion and quota sampling were used to recruit HPs from Quebec, Ontario, and British Columbia who are involved in the care of patients with kidney disease and/or with transplant coordination. PATIENTS Not applicable. MEASUREMENTS Semistructured interviews were conducted. The interview guide was developed based on a preliminary analytical framework and a review of the literature. METHODS Thematic analysis was used to analyze the data stemming from the interviews. The coding process comprised of a deductive and inductive approach, and the use of a qualitative analysis software (NVivo 11). Following this, themes were identified and developed. Interviews were conducted until thematic saturation was obtained. In total, we conducted 16 telephone interviews as thematic saturation was attained. RESULTS Six predominant themes emerged: (1) lack of communication between transplant and dialysis teams, (2) absence of referral guidelines, (3) role perception and lack of multidisciplinary involvement, (4) HP's lack of information and training, (5) negative attitudes of some HP toward LDKT, (6) patient-level barriers as defined by the HP. HPs did mention patients' attitudes and some characteristics as the main barriers to discussions about living donation; this was noted in all provinces. HPs from Ontario and British Columbia indicated multiple strategies being implemented to address some of these barriers. Those from Ontario mentioned strategies that center on the core principles of provincial-level standardization, while those from British Columbia center on engaging the entire multidisciplinary team and improved role perception. We noted a dearth of such efforts in Quebec; however, efforts around education and promotion, while tentative, have emerged. LIMITATIONS Social desirability and selection bias. Our analysis might not be applicable to other provinces. CONCLUSIONS HPs involved with the referral and coordination of transplantation play a major role in access to LDKT. We have identified challenges they face when discussing living donation with their patients that warrant further assessment and research to inform policy change.
Collapse
Affiliation(s)
- Shaifali Sandal
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Julio F. Fiore
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - David Kenneth Wright
- St. Mary’s Research Center, Montreal, QC, Canada
- School of Nursing, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Chantal Fortin
- Division of Nephrology, Department of Medicine, Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Liane S. Feldman
- Department of Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Ahsan Alam
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Catherine Weber
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
11
|
Hamilton BCS, Kukreja J, Ware LB, Matthay MA. Protein biomarkers associated with primary graft dysfunction following lung transplantation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L531-L541. [PMID: 28130262 DOI: 10.1152/ajplung.00454.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Severe primary graft dysfunction affects 15-20% of lung transplant recipients and carries a high mortality risk. In addition to known donor, recipient, and perioperative clinical risk factors, numerous biologic factors are thought to contribute to primary graft dysfunction. Our current understanding of the pathogenesis of lung injury and primary graft dysfunction emphasizes multiple pathways leading to lung endothelial and epithelial injury. Protein biomarkers specific to these pathways can be measured in the plasma, bronchoalveolar lavage fluid, and lung tissue. Clarification of the pathophysiology and timing of primary graft dysfunction could illuminate predictors of dysfunction, allowing for better risk stratification, earlier identification of susceptible recipients, and development of targeted therapies. Here, we review much of what has been learned about the association of protein biomarkers with primary graft dysfunction and evaluate this association at different measurement time points.
Collapse
Affiliation(s)
- B C S Hamilton
- Department of Surgery, University of California San Francisco, San Francisco, California;
| | - J Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - L B Ware
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M A Matthay
- Department of Medicine, Anesthesia, and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California; and
| |
Collapse
|