1
|
Sakata N, Yoshimatsu G, Kawakami R, Kodama S. Influence of relatively short-term culture on adult porcine islets for xenotransplantation. Sci Rep 2024; 14:11640. [PMID: 38773268 PMCID: PMC11109127 DOI: 10.1038/s41598-024-62570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/19/2024] [Indexed: 05/23/2024] Open
Abstract
Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
2
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
3
|
Mn porphyrins as a novel treatment targeting sickle cell NOXs to reverse and prevent acute vaso-occlusion in vivo. Blood Adv 2021; 4:2372-2386. [PMID: 32479589 DOI: 10.1182/bloodadvances.2020001642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
In sickle cell disease (SCD), adhesion of sickle red blood cells (SSRBCs) and activated leukocytes in inflamed venules affects blood rheology, causing vaso-occlusive manifestations and vital reduction in microvascular blood flow. Recently, we found that NADPH oxidases (NOXs) create a vicious feedback loop within SSRBCs. This positive feedback loop mediates SSRBC adhesion to the endothelium. We show for the first time the therapeutic effectiveness of the redox-active manganese (Mn) porphyrins MnTnBuOE-2-PyP5+ (MnBuOE; BMX-001) and MnTE-2-PyP5+ (MnE; BMX-010, AEOL10113) to treat established vaso-occlusion in a humanized sickle mouse model of an acute vaso-occlusive crisis using intravital microscopy. These Mn porphyrins can suppress SSRBC NOX activity. Subcutaneous administration of only 1 dose of MnBuOE or MnE at 0.1 to 2 mg/kg after the inflammatory trigger of vaso-occlusion, or simultaneously, reversed and reduced leukocyte and SSRBC adhesion, diminished leukocyte rolling, restored blood flow, and increased survival rate. Furthermore, MnBuOE and MnE administered to sickle mice subcutaneously at 0.1 to 1 mg/kg for 28 days (except on weekends) did not exacerbate anemia, which seemed to be due to downregulation of both SSRBC reactive oxygen species production and exposure of the eryptotic marker phosphatidylserine. In addition, Mn porphyrins ameliorated leukocytosis, venous blood gases, endothelial activation, and organ oxidative damage. Our data suggest that Mn porphyrins, likely by repressing NOX-mediated adhesive function of SSRBCs and activated leukocytes, could represent a novel, safe therapeutic intervention to treat or prevent the establishment of acute pain crises. These NOX-targeted antioxidants merit further assessment in SCD clinical trials.
Collapse
|
4
|
Verhoeff K, Henschke SJ, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Inducible Pluripotent Stem Cells as a Potential Cure for Diabetes. Cells 2021; 10:cells10020278. [PMID: 33573247 PMCID: PMC7911560 DOI: 10.3390/cells10020278] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last century, diabetes has been treated with subcutaneous insulin, a discovery that enabled patients to forego death from hyperglycemia. Despite novel insulin formulations, patients with diabetes continue to suffer morbidity and mortality with unsustainable costs to the health care system. Continuous glucose monitoring, wearable insulin pumps, and closed-loop artificial pancreas systems represent an advance, but still fail to recreate physiologic euglycemia and are not universally available. Islet cell transplantation has evolved into a successful modality for treating a subset of patients with ‘brittle’ diabetes but is limited by organ donor supply and immunosuppression requirements. A novel approach involves generating autologous or immune-protected islet cells for transplant from inducible pluripotent stem cells to eliminate detrimental immune responses and organ supply limitations. In this review, we briefly discuss novel mechanisms for subcutaneous insulin delivery and define their shortfalls. We describe embryological development and physiology of islets to better understand their role in glycemic control and, finally, discuss cell-based therapies for diabetes and barriers to widespread use. In response to these barriers, we present the promise of stem cell therapy, and review the current gaps requiring solutions to enable widespread use of stem cells as a potential cure for diabetes.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Correspondence: ; Tel.: +1-780-984-1836
| | - Sarah J. Henschke
- Department of Emergency Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | | | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Andrew Mark James Shapiro
- FRCS (Eng) FRCSC MSM FCAHS, Clinical Islet Transplant Program, Alberta Diabetes Institute, Department of Surgery, Canadian National Transplant Research Program, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
5
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
6
|
Zhang P, Zeng L, Gao W, Li H, Gao Z. Peroxynitrite scavenger FeTPPS effectively inhibits hIAPP aggregation and protects against amyloid induced cytotoxicity. Int J Biol Macromol 2020; 161:336-344. [DOI: 10.1016/j.ijbiomac.2020.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
7
|
Bral M, Pawlick R, Marfil-Garza B, Dadheech N, Hefler J, Thiesen A, Shapiro AMJ. Pan-caspase inhibitor F573 mitigates liver ischemia reperfusion injury in a murine model. PLoS One 2019; 14:e0224567. [PMID: 31770375 PMCID: PMC6879152 DOI: 10.1371/journal.pone.0224567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 12/03/2022] Open
Abstract
Background Liver ischemia reperfusion injury (IRI) remains a challenge in liver transplantation. A number of compounds have previously demonstrated efficacy in mitigating IRI. Herein, we applied three specific additive strategies to a mouse IRI screening model to determine their relative potencies in reducing such injury, with a view to future testing in a large animal and clinical ex situ normothermic perfusion setting: 1) F573, a pan-caspase inhibitor, 2) anti-inflammatory anakinra and etanrecept and 3) BMX-001, a mimetic of superoxide dismutase. Methods A non-lethal liver ischemia model in mice was used. Additives in the treatment groups were given at fixed time points before induction of injury, compared to a vehicle group that received no therapeutic treatment. Mice were recovered for 6 hours following the ischemic insult, at which point blood and tissue samples were obtained. Plasma was processed for transaminase levels. Whole liver tissue samples were processed for histology, markers of apoptosis, oxidative stress, and cytokine levels. Results In an in vivo murine IRI model, the F573 treatment group demonstrated statistically lower alanine aminotransferase (ALT) levels (p = 0.01), less evidence of apoptosis (p = 0.03), and lower cytokine levels compared to vehicle. The etanercept with anakinra treatment group demonstrated significantly lower cytokine levels. The BMX-001 group demonstrated significantly decreased apoptosis (p = 0.01) evident on TUNEL staining. Conclusions The administration of pan-caspase inhibitor F573 in a murine in vivo model likely mitigates liver IRI based on decreased markers of cellular injury, decreased evidence of apoptosis, and improved cytokine profiles. Anakinra with etanercept, and BMX-001 did not demonstrate convincing efficacy at reducing IRI in this model, and likely need further optimization. The positive findings set rational groundwork for future translational studies of applying F573 during normothermic ex situ liver perfusion, with the aim of improving the quality of marginal grafts.
Collapse
Affiliation(s)
- Mariusz Bral
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | | | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Aducio Thiesen
- Department of Pathology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
8
|
Recent progress in porcine islet isolation, culture and engraftment strategies for xenotransplantation. Curr Opin Organ Transplant 2019; 23:633-641. [PMID: 30247169 DOI: 10.1097/mot.0000000000000579] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Xenotransplantation of porcine islets is a realistic option to restore β-cell function in type 1 diabetic patients. Among other factors, such as islet donor age (fetal, neonatal and adult) and genotype (wild type and genetically modified), choice of the transplantation site, and immune protection of the islets, efficient strategies for islet isolation, culture and engraftment are critical for the success of islet xenotransplantation. RECENT FINDINGS Neonatal porcine islets (NPIs) are immature at isolation and need to be matured in vitro or in vivo before they become fully functional. Recent developments include a scalable protocol for isolation of clinically relevant batches of NPIs and a stepwise differentiation protocol for directed maturation of NPIs. In addition, different sources of mesenchymal stem cells were shown to support survival and functional maturation of NPIs in vitro and in various transplantation models in vivo. SUMMARY A plethora of different culture media and supplements have been tested; however, a unique best culture system for NPIs is still missing. New insights, for example from single-cell analyses of islets or from stem cell differentiation toward β cells may help to optimize culture of porcine islets for xenotransplantation in an evidence-based manner.
Collapse
|
9
|
Batinic-Haberle I, Tome ME. Thiol regulation by Mn porphyrins, commonly known as SOD mimics. Redox Biol 2019; 25:101139. [PMID: 31126869 PMCID: PMC6859569 DOI: 10.1016/j.redox.2019.101139] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 01/27/2023] Open
Abstract
Superoxide dismutases play an important role in human health and disease. Three decades of effort have gone into synthesizing SOD mimics for clinical use. The result is the Mn porphyrins which have SOD-like activity. Several clinical trials are underway to test the efficacy of these compounds in patients, particularly as radioprotectors of normal tissue during cancer treatment. However, aqueous chemistry data indicate that the Mn porphyrins react equally well with multiple redox active species in cells including H2O2, O2•-, ONOO-, thiols, and ascorbate among others. The redox potential of the Mn porphyrins is midway between the potentials for the oxidation and reduction of O2•-. This positions them to react equally well as oxidants and reductants in cells. The result of this unique chemistry is that: 1) the species the Mn porphyrins react with in vivo will depend on the relative concentrations of the reactive species and Mn porphyrins in the cell of interest, and 2) the Mn porphyrins will act as catalytic (redox cycling) agents in vivo. The ability of the Mn porphyrins to catalyze protein S-glutathionylation means that Mn porphyrins have the potential to globally modulate cellular redox regulatory signaling networks. The purpose of this review is to summarize the data that indicate the Mn porphyrins have diverse reactions in vivo that are the basis of the observed biological effects. The ability to catalyze multiple reactions in vivo expands the potential therapeutic use of the Mn porphyrins to disease models that are not SOD based.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Margaret E Tome
- Departments of Pathology and Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
10
|
Abstract
In this Review, we focus on catalytic antioxidant study based on transition metal complexes, organoselenium compounds, supramolecules and protein scaffolds.
Collapse
Affiliation(s)
- Riku Kubota
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry for Environment
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
11
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|
12
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
13
|
|