1
|
Eldaly AS, Avila FR, Torres-Guzman RA, Maita K, Garcia JP, Serrano LP, Ho O, Forte AJ. Cell-Based Therapies Induce Tolerance of Vascularized Composite Allotransplants: A Systematic Review. J Surg Res 2024; 300:389-401. [PMID: 38851085 DOI: 10.1016/j.jss.2024.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissue types as a solution for devastating injuries. Despite the highly encouraging functional outcomes of VCA, the consequences of long-term immunosuppression remain the main obstacle in its application. In this review, we provide researchers and surgeons with a summary of the latest advances in the field of cell-based therapies for VCA tolerance. METHODS Four electronic databases were searched: PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature , and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as the basis of our organization. RESULTS Hematopoietic stem cells prolonged VCA survival. A combination of immature dendritic cells and tacrolimus was superior to tacrolimus alone. T cell Ig domain and mucin domain modified mature dendritic cells increased VCA tolerance. Bone marrow-derived mesenchymal stem cells prolonged survival of VCAs. A combination of adipose-derived mesenchymal stem cells, cytotoxic T-lymphocyte antigen 4 immunoglobulin, and antilymphocyte serum significantly improved VCA tolerance. Ex-vivo allotransplant perfusion with recipient's bone marrow-derived mesenchymal stem cells increased VCA survival. Recipient's adipose-derived mesenchymal stem cells and systemic immunosuppression prolonged VCA survival more than any of those agents alone. Additionally, a combination of peripheral blood mononuclear cells shortly incubated in mitomycin and cyclosporine significantly improved VCA survival. Finally, a combination of donor recipient chimeric cells, anti-αβ-T cell receptor (TCR), and cyclosporine significantly prolonged VCA tolerance. CONCLUSIONS Evidence from animal studies shows that cell-based therapies can prolong survival of VCAs. However, there remain many obstacles for these therapies, and they require rigorous clinical research given the rarity of the subjects and the complexity of the therapies. The major limitations of cell-based therapies include the need for conditioning with immunosuppressive drugs and radiation, causing significant toxicity. Safety concerns also persist as most research is on animal models. While completely replacing traditional immunosuppression with cell-based methods is unlikely soon, these therapies could reduce the need for high doses of immunosuppressants and improve VCA tolerance.
Collapse
Affiliation(s)
| | | | | | - Karla Maita
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - John P Garcia
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Olivia Ho
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
2
|
Li Q, Zhang F, Fu X, Han N. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes as Nanomedicine for Peripheral Nerve Injury. Int J Mol Sci 2024; 25:7882. [PMID: 39063125 PMCID: PMC11277195 DOI: 10.3390/ijms25147882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Peripheral nerve injury (PNI) is a complex and protracted process, and existing therapeutic approaches struggle to achieve effective nerve regeneration. Recent studies have shown that mesenchymal stem cells (MSCs) may be a pivotal choice for treating peripheral nerve injury. MSCs possess robust paracrine capabilities, and exosomes, as the primary secretome of MSCs, are considered crucial regulatory mediators involved in peripheral nerve regeneration. Exosomes, as nanocarriers, can transport various endogenous or exogenous bioactive substances to recipient cells, thereby promoting vascular and axonal regeneration while suppressing inflammation and pain. In this review, we summarize the mechanistic roles of exosomes derived from MSCs in peripheral nerve regeneration, discuss the engineering strategies for MSC-derived exosomes to improve therapeutic potential, and explore the combined effects of MSC-derived exosomes with biomaterials (nerve conduits, hydrogels) in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Fengshi Zhang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
3
|
Ren D, Chen J, Yu M, Yi C, Hu X, Deng J, Guo S. Emerging strategies for tissue engineering in vascularized composite allotransplantation: A review. J Tissue Eng 2024; 15:20417314241254508. [PMID: 38826796 PMCID: PMC11143860 DOI: 10.1177/20417314241254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Vascularized composite allotransplantation (VCA), which can effectively improve quality of life, is a promising therapy for repair and reconstruction after face or body trauma. However, intractable issues are associated with VCA, such as the inevitable multiple immunogenicities of different tissues that cause severe rejection, the limited protocols available for clinical application, and the shortage of donor sources. The existing regimens used to extend the survival of patients receiving VCAs and suppress rejection are generally the lifelong application of immunosuppressive drugs, which have side effects. Consequently, studies aiming at tissue engineering methods for VCA have become a topic. In this review, we summarize the emerging therapeutic strategies for tissue engineering aimed to prolong the survival time of VCA grafts, delay the rejection and promote prevascularization and tissue regeneration to provide new ideas for future research on VCA treatment.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Plastic Surgery, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Tacrolimus before CTLA4Ig and rapamycin promotes vascularized composite allograft survival in MGH miniature swine. Transpl Immunol 2022; 75:101696. [PMID: 35987329 DOI: 10.1016/j.trim.2022.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND We evaluated the outcome of vertical rectus abdominus myocutaneous flap (VRAM) allotransplantation in a mini-pig model, using a combined co-stimulation blockade (Co-SB) and mechanistic target of rapamycin inhibition (mTORi)-based regimen, with or without preceding calcineurin inhibition (CNI). MATERIALS AND METHODS VRAM allotransplants were performed between SLA-mismatched MGH miniature swine. Group A (n = 2) was treated continuously with the mTOR inhibitor rapamycin from day -1 in combination with the Co-SB agent cytotoxic T lymphocyte antigen 4-Ig (CTLA4-Ig) from post-operative day (POD) 0. In group B (n = 3), animals received tacrolimus daily from POD 0 to POD 13, followed by rapamycin daily from POD 7 and CTLA4-Ig weekly from POD 7-28. Graft rejection was determined by Banff criteria and host cellular and humoral immunity monitored. RESULTS In group A, allografts developed grade-I acute rejection by POD 2 and POD 7, and reached grade-IV by POD 17 and POD 20, respectively. By contrast, in group B, two allografts demonstrated grade-I rejection on POD 30 and grade-IV on POD 74, while the third exhibited grade-I rejection starting on POD 50, though this animal had to be euthanized on POD 58 due to Pneumocystis jirovecii infection. Time-to-event incidence of grade-I rejection was significantly lower in group A compared to group B. During the first 3 weeks post-transplant, no significant differences in anti-donor immunity were observed between the groups. CONCLUSION A short course of CNI, followed by combined Co-SB and mTORi significantly delays acute rejection of VRAM allografts in SLA-mismatched miniature swine.
Collapse
|
7
|
Tacrolimus-Eluting Disk within the Allograft Enables Vascularized Composite Allograft Survival with Site-Specific Immunosuppression without Systemic Toxicity. Pharm Res 2022; 39:2179-2190. [PMID: 35915321 DOI: 10.1007/s11095-022-03345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
AIM Widespread clinical application of vascularized composite allotransplantation (VCA) has been limited by the need for lifelong systemic immunosuppression to prevent rejection. Our goal was to develop a site-specific immunosuppressive strategy that promotes VCA allograft survival and minimizes the risk of systemic side effects. METHODS Tacrolimus loaded polycaprolactone (TAC-PCL) disks were prepared and tested for their efficacy in sustaining VCA allograft survival via site-specific immunosuppression. Brown Norway-to-Lewis rat hind limb transplantations were performed; animals received one TAC disk either in the transplanted (DTx) or in the contralateral non-transplanted (DnonTx) limbs. In another group, animals received DTx and lymphadenectomy on Tx side. Blood and allograft levels of TAC were measured using LC-MS/MS. Systemic toxicity was evaluated. RESULTS Animals that received DTx achieved long-term allograft survival (> 200 days) without signs of metabolic and infectious complications. In these animals, TAC blood levels were low but stable between 2 to 5 ng/mL for nearly 100 days. High concentrations of TAC were achieved in the allografts and the draining lymph nodes (DLN). Animals that underwent lymphadenectomy rejected their allograft by 175 days. Animals that received DnonTx rejected their allografts by day 70. CONCLUSION Controlled delivery of TAC directly within the allograft (with a single TAC disk) effectively inhibits rejection and prolongs VCA allograft survival, while mitigating the complications of systemic immunosuppression. There was a survival benefit of delivering TAC within the allograft as compared to a remote site. We believe this approach of local drug delivery has significant implications for drug administration in transplantation.
Collapse
|
8
|
Anggelia MR, Cheng HY, Lai PC, Hsieh YH, Lin CH, Lin CH. Cell Therapy in Vascularized Composite Allotransplantation. Biomed J 2022; 45:454-464. [PMID: 35042019 PMCID: PMC9422067 DOI: 10.1016/j.bj.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allograft rejection is one of the obstacles in achieving a successful vascularized composite allotransplantation (VCA). Treatments of graft rejection with lifelong immunosuppression (IS) subject the recipients to a lifelong risk of cancer development and opportunistic infections. Cell therapy has recently emerged as a promising strategy to modulate the immune system, minimize immunosuppressant drug dosages, and induce allograft tolerance. In this review, the recent works regarding the use of cell therapy to improve allograft outcomes are discussed. The current data supports the safety of cell therapy. The suitable type of cell therapy in allotransplantation is clinically dependent. Bone marrow cell therapy is more suitable for the induction phase, while other cell therapies are more feasible in either the induction or maintenance phase, or for salvage of allograft rejection. Immune cell therapy focuses on modulating the immune response, whereas stem cells may have an additional role in promoting structural regenerations, such as nerve regeneration. Source, frequency, dosage, and route of cell therapy delivery are also dependent on the specific need in the clinical setting.
Collapse
Affiliation(s)
- Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Chin Lai
- The Kidney Institute and Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Huan Hsieh
- Department of Plastic and Reconstructive Surgery, Epworth Eastern Hospital, Victoria, Australia
| | - Chih-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
10
|
Kuo PJ, Rau CS, Wu SC, Lin CW, Huang LH, Lu TH, Wu YC, Wu CJ, Tsai CW, Hsieh CH. Exosomes Secreted by Adipose-Derived Stem Cells Following FK506 Stimulation Reduce Autophagy of Macrophages in Spine after Nerve Crush Injury. Int J Mol Sci 2021; 22:9628. [PMID: 34502537 PMCID: PMC8431814 DOI: 10.3390/ijms22179628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages emerge in the milieu around innervated neurons after nerve injuries. Following nerve injury, autophagy is induced in macrophages and affects the regulation of inflammatory responses. It is closely linked to neuroinflammation, while the immunosuppressive drug tacrolimus (FK506) enhances nerve regeneration following nerve crush injury and nerve allotransplantation with additional neuroprotective and neurotrophic functions. The combined use of FK506 and adipose-derived stem cells (ADSCs) was employed in cell therapy for organ transplantation and vascularized composite allotransplantation. This study aimed to investigate the topical application of exosomes secreted by ADSCs following FK506 treatment (ADSC-F-exo) to the injured nerve in a mouse model of sciatic nerve crush injury. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile the potential exosomal proteins involved in autophagy. Immunohistochemical analysis revealed that nerve crush injuries significantly induced autophagy in the dorsal root ganglia and dorsal horn of the spinal segments. Locally applied ADSC-F-exo significantly reduced autophagy of macrophages in the spinal segments after nerve crush injury. Proteomic analysis showed that of the 22 abundant exosomal proteins detected in ADSC-F-exo, heat shock protein family A member 8 (HSPA8) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) are involved in exosome-mediated autophagy reduction.
Collapse
Affiliation(s)
- Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chia-Wei Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Tsu-Hsiang Lu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Wen Tsai
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, LinKou 33333, Taiwan
| |
Collapse
|
11
|
Update on the Basic Science Concepts and Applications of Adipose-Derived Stem Cells in Hand and Craniofacial Surgery. Plast Reconstr Surg 2021; 148:475e-486e. [PMID: 34432707 DOI: 10.1097/prs.0000000000008279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Adipose-derived stem cell therapy offers plastic surgeons a novel treatment alternative for conditions with few therapeutic options. Adipose-derived stem cells are a promising treatment because of their broad differentiation potential, capacity for self-renewal, and ease of isolation. Over the past decade, plastic surgeons have attempted to harness adipose-derived stem cells' unique cellular characteristics to improve the survival of traditional fat grafting procedures, a process known as cell-assisted lipotransfer. However, the full implications of cell-assisted lipotransfer in clinical practice remain incompletely understood, stressing the urgent need to assess the scientific evidence supporting adipose-derived stem cell-based interventions. Furthermore, with the strict regulatory climate surrounding tissue explantation therapies, reviewing the safety and efficacy of these treatments will clarify their regulatory viability moving forward. In this report, the authors provide a comprehensive, up-to-date appraisal of best evidence-based practices supporting adipose-derived stem cell-derived therapies, highlighting the known mechanisms behind current clinical applications in tissue engineering and regenerative medicine specific to plastic and reconstructive surgery. The authors outline best practices for the harvest and isolation of adipose-derived stem cells and discuss why procedure standardization will elucidate the scientific bases for their broad use. Finally, the authors discuss challenges posed by U.S. Food and Drug Administration oversight of these cell-based therapies and examine the role of adipose-derived stem cell-based applications in the future of plastic surgery.
Collapse
|
12
|
Tchiloemba B, Kauke M, Haug V, Abdulrazzak O, Safi AF, Kollar B, Pomahac B. Long-term Outcomes After Facial Allotransplantation: Systematic Review of the Literature. Transplantation 2021; 105:1869-1880. [PMID: 33148976 DOI: 10.1097/tp.0000000000003513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Facial vascularized composite allotransplantation (fVCA) represents a reconstructive approach that enables superior improvements in functional and esthetic restoration compared with conventional craniomaxillofacial reconstruction. Outcome reports of fVCA are usually limited to short-term follow-up or single-center experiences. We merge scientific literature on reported long-term outcome data to better define the risks and benefits of fVCA. METHODS We conducted a systematic review of PubMed/MEDLINE databases in accordance with PRISMA guidelines. English full-text articles providing data on at least 1 unique fVCA patient, with ≥3 years follow-up, were included. RESULTS The search yielded 1812 articles, of which 28 were ultimately included. We retrieved data on 23 fVCA patients with mean follow-up of 5.3 years. More than half of the patients showed improved quality of life, eating, speech, and motor and sensory function following fVCA. On average, the patients had 1 acute cell-mediated rejection and infectious episode per year. The incidence rates of acute rejection and infectious complications were high within first-year posttransplant but declined thereafter. Sixty-five percent of the patients developed at least 1 neoplastic or metabolic complication after transplantation. Chronic vascular rejection was confirmed in 2 patients, leading to allograft loss after 8 and 9 years. Two patient deaths occurred 3.5 and 10.5 years after transplant due to suicide and lung cancer, respectively. CONCLUSIONS Allograft functionality and improvements in quality of life suggest a positive risk-benefit ratio for fVCA. Recurrent acute rejection episodes, chronic rejection, immunosuppression-related complications, and heterogeneity in outcome reporting present ongoing challenges in this field.
Collapse
Affiliation(s)
- Bianief Tchiloemba
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Martin Kauke
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Obada Abdulrazzak
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ali-Farid Safi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Branislav Kollar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Luo Y, Ji H, Cao Y, Ding X, Li M, Song H, Li S, WaTableng C, Wu H, Meng J, Du H. miR-26b-5p/TCF-4 Controls the Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells. Cell Transplant 2021; 29:963689720934418. [PMID: 32579400 PMCID: PMC7563810 DOI: 10.1177/0963689720934418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we assessed the ability of miR-26b-5p to regulate T cell factor 4 (TCF-4) expression and thereby control human adipose-derived mesenchymal stem cell (hADMSC) adipogenic differentiation. Adipogenic medium was used to induce hADMSC differentiation over a 6-d period. The ability of miR-26b-5p to interact with the TCF-4 mRNA was confirmed through both predictive bioinformatics analyses and luciferase reporter assays. Immunofluorescent staining was used to visualize the impact of miR-26b-5p inhibition or overexpression on TCF-4 and β-catenin levels in hADMSCs. Further functional analyses were conducted by transfecting these cells with siRNAs specific for TCF-4 and β-catenin. Adipogenic marker and Wnt/β-catenin pathway gene expression levels were assessed via real-time polymerase chain reaction and western blotting. β-catenin localization was assessed via immunofluorescent staining. As expected, our adipogenic media induced the adipocytic differentiation of hADMSCs. In addition, we confirmed that TCF-4 is an miR-26b-5p target gene in these cells, and that protein levels of both TCF-4 and β-catenin were reduced when these cells were transfected with miR-26b-5p mimics. Overexpression of this microRNA also enhanced hADMSC adipogenesis, whereas TCF-4 and β-catenin overexpression inhibited this process. The enhanced hADMSC adipogenic differentiation that was observed following TCF-4 or β-catenin knockdown was partially reversed when miR-26b-5p expression was inhibited. We found that miR-26b-5p serves as a direct negative regulator of TCF-4 expression within hADMSCs, leading to inactivation of the Wnt/β-catenin pathway and thereby promoting the adipogenic differentiation of these cells in vitro.
Collapse
Affiliation(s)
- Yadong Luo
- Department of Stomatology, Central Hospital of Xuzhou, the Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China.,These authors contributed equally to this article
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,These authors contributed equally to this article
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,These authors contributed equally to this article
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Haiyang Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Chenxing WaTableng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Jian Meng
- Department of Stomatology, Central Hospital of Xuzhou, the Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, PR China.,Both authors are co-corresponding authors
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.,Both authors are co-corresponding authors
| |
Collapse
|
14
|
Pharmacokinetics and Biodistribution of Tacrolimus after Topical Administration: Implications for Vascularized Composite Allotransplantation. Pharm Res 2020; 37:222. [PMID: 33067715 DOI: 10.1007/s11095-020-02921-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
AIM The high doses of oral tacrolimus (TAC) (1,2) necessary to prevent acute rejection (AR) after vascularized composite allotransplantation (VCA) are associated with systemic adverse effects. The skin is the most antigenic tissue in VCA and the primary target of AR. However, the short-term use of topical TAC (Protopic®), as an off-label adjunct to oral TAC, to treat AR episodes pro re nata (PRN), has yielded inconsistent results. There is lack of data on the pharmacokinetics and tissue distribution of topical TAC in VCA, that hampers our understanding of the reasons for unreliable efficacy. Toward this goal, we evaluated the ability of topical TAC to achieve high local tissue concentrations at the site of application with low systemic concentrations. MATERIALS AND METHODS We assessed the pharmacokinetics and tissue distribution of topical TAC (Protopic®, 0.03%) after single or repeated topical application in comparison to those after systemic delivery in rats. Animals received a single topical application of TAC ointment (Group 1) or an intravenous (IV) injection of TAC (Group 2) at a dose of 0.5 mg/kg. In another experiment, animals received daily topical application of TAC ointment (Group 3), or daily intraperitoneal (IP) injection of TAC (Group 4) at a dose of 0.5 mg/kg for 7 days. TAC concentrations in blood and tissues were analyzed by Liquid Chromatography-Mass Spectrometry (LC/MS-MS). RESULTS Following single topical administration, TAC was absorbed slowly with a Tmax of 4 h and an absolute bioavailability of 11%. The concentrations of TAC in skin and muscle were several folds higher than whole blood concentrations. Systemic levels remained subtherapeutic (< 3 ng/ml) with repeated once daily applications. CONCLUSION Topical application of TAC ointment (Protopic®, 0.03%) at a dose of 0.5 mg/kg/day provided high concentrations in the local tissues with low systemic exposure. Repeated topical administration of TAC is well tolerated with no local or systemic adverse effects. This study confirms the feasibility of topical application of TAC for site specific graft immunosuppression and enables future applications in VCA.
Collapse
|
15
|
Giannis D, Moris D, Cendales LC. Costimulation Blockade in Vascularized Composite Allotransplantation. Front Immunol 2020; 11:544186. [PMID: 33042138 PMCID: PMC7527523 DOI: 10.3389/fimmu.2020.544186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular composite allotransplantation (VCA) is a field under research and has emerged as an alternative option for the repair of severe disfiguring defects that result from infections or traumatic amputation in a selected group of patients. VCA is performed in centers with appropriate expertise, experience and adequate resources to effectively manage the complexity and complications of this treatment. Lifelong immunosuppressive therapy, immunosuppression associated complications, and the effects of the host immune response in the graft are major concerns in VCA. VCA is considered a quality of life transplant and the risk-benefit ratio is dissimilar to life saving transplants. Belatacept seems a promising drug that prolongs patient and graft survival in kidney transplantation and it could also be an alternative approach to VCA immunosuppression. In this review, we are summarizing current literature about the role of costimulation blockade, with a focus on belatacept in VCA.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Dimitrios Moris
- Duke Surgery, Duke University Medical Center, Durham, NC, United States
| | - Linda C. Cendales
- Duke Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
16
|
Schweizer R, Waldner M, Oksuz S, Zhang W, Komatsu C, Plock JA, Gorantla VS, Solari MG, Kokai L, Marra KG, Rubin JP. Evaluation of Porcine Versus Human Mesenchymal Stromal Cells From Three Distinct Donor Locations for Cytotherapy. Front Immunol 2020; 11:826. [PMID: 32435248 PMCID: PMC7218165 DOI: 10.3389/fimmu.2020.00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Mesenchymal stromal cell (MSC)-based cytotherapies fuel the hope for reduction of chronic systemic immunosuppression in allotransplantation, and our group has previously shown this capability for both swine and human cells. MSCs harvested from distinct anatomical locations may have different behavior and lead to different outcomes in both preclinical research and human trials. To provide an effective reference for cell therapy studies, we compared human and porcine MSCs from omental fat (O-ASC), subcutaneous fat (SC-ASC) and bone marrow (BM-MSC) under rapid culture expansion with endothelial growth medium (EGM). Methods: MSCs isolated from pigs and deceased human organ donors were compared for yield, viability, cell size, population doubling times (PDT), surface marker expression and differentiation potential after rapid expansion with EGM. Immunosuppressant toxicity on MSCs was investigated in vitro for four different standard immunosuppressive drugs. Immunomodulatory function was compared in mixed lymphocyte reaction assays (MLR) with/without immunosuppressive drug influence. Results: Human and porcine omental fat yielded significantly higher cell numbers than subcutaneous fat. Initial PDT was significantly shorter in ASCs than BM-MSCs and similar thereafter. Viability was reduced in BM-MSCs. Porcine MSCs were positive for CD29, CD44, CD90, while human MSCs expressed CD73, CD90 and CD105. All demonstrated confirmed adipogenic differentiation capacity. Cell sizes were comparable between groups and were slightly larger in human cells. Rapamycin revealed slight, mycophenolic acid strong and significant dose-dependent toxicity on viability/proliferation of almost all MSCs at therapeutic concentrations. No relevant toxicity was found for Tacrolimus and Cyclosporin A. Immunomodulatory function was dose-dependent and similar between groups. Immunosuppressants had no significant adverse effect on MSC immunomodulatory function. Discussion: MSCs from different harvest locations and donor species differ in terms of isolation yields, viability, PDT, and size. We did not detect relevant differences in immunomodulatory function with or without the presence of immunosuppressants. Human and pig O-ASC, SC-ASC and BM-MSC share similar immunomodulatory function in vitro and warrant confirmation in large animal studies. These findings should be considered in preclinical and clinical MSC applications.
Collapse
Affiliation(s)
- Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Sinan Oksuz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Plastic, Reconstructive and Aesthetic Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chiaki Komatsu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Vijay S Gorantla
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|