1
|
Böhmer J, Wåhlander H, Tran-Lundmark K, Odermarsky M, Alpman MS, Asp J, Nilsson S, Karason K, Jan S, Ricksten A, Dellgren G. Absolute Quantification of Donor-Derived Cell-Free DNA Following Pediatric and Adult Heart Transplantation. J Heart Lung Transplant 2025:S1053-2498(25)01957-6. [PMID: 40345563 DOI: 10.1016/j.healun.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE Traditional rejection surveillance after heart transplantation (HTx) is based on endomyocardial biopsies (EMB), which are invasive, expensive and associated with complications. Monitoring using cell-free DNA (cfDNA) is promising, but most studies report only on the donor fraction (DF) as the percentage of donor derived-cfDNA (dd-cfDNA) relative to total-cfDNA. We evaluated the performance of absolute as well as relative levels of dd-cfDNA to detect rejection. METHODS HTx patients were prospectively enrolled in a multicenter study, and blood samples collected concurrently with EMB. Dd-cfDNA was quantified using droplet digital PCR (ddPCR). Rejection was defined by EMB-results and compared to non-rejection EMB. Patients with symptomatic rejection were studied as a subgroup and test performance was determined using ROC-analysis. RESULTS We included 94 patients (70 adults and 24 children) undergoing rejection surveillance during the first year after HTx, which resulted in 1007 EMB and blood samples. In 19 patients, there were 32 rejection episodes > 14 days past HTx, with 15 of them being symptomatic. In ROC analysis, dd-cfDNA and DF could discriminate quiescence from rejection with an AUC of 0.68 and 0.65, respectively. Dd-cDNA at a threshold of 25 copies/ml showed an AUC of 0.87 to detect symptomatic rejection, significantly better than DF (AUC of 0.75). CONCLUSIONS dd-cfDNA found good discrimination between cardiac recipients with and without rejection. Absolute quantification of dd-cfDNA with ddPCR is a fast and effective method to monitor graft health. Analyzing absolute dd-cfDNA levels helps identify other factors, besides rejection, that may influence cfDNA levels, potentially reducing the need for EMB.
Collapse
Affiliation(s)
- Jens Böhmer
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, Clinic Frankfurt-Höchst, Frankfurt, Germany.
| | - Håkan Wåhlander
- Pediatric Heart Center, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Tran-Lundmark
- Pediatric Heart Center, Skane University Hospital, Lund, Sweden; Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Michal Odermarsky
- Pediatric Heart Center, Skane University Hospital, Lund, Sweden; Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Maria Sjöborg Alpman
- Pediatric Heart Center, Karolinska University Hospital, Stockhol, Sweden; Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Julia Asp
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristjan Karason
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sunnegårdh Jan
- Pediatric Heart Center, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Ricksten
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Dellgren
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Seif N, Bloom RD. Using donor-derived cell-free DNA in kidney transplant patients: this jury needs more evidence. Kidney Int 2025; 107:796-799. [PMID: 40254360 DOI: 10.1016/j.kint.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 04/22/2025]
Affiliation(s)
- Nay Seif
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn Kidney Pancreas Transplant Program, Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roy D Bloom
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn Kidney Pancreas Transplant Program, Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Thorp EB, Ananthakrishnan A, Lantz CW. Decoding immune cell interactions during cardiac allograft vasculopathy: insights derived from bioinformatic strategies. Front Cardiovasc Med 2025; 12:1568528. [PMID: 40342971 PMCID: PMC12058854 DOI: 10.3389/fcvm.2025.1568528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic allograft vasculopathy (CAV) is a major cause of late graft failure in heart transplant recipients, characterized by progressive intimal thickening and diffuse narrowing of the coronary arteries. Unlike atherosclerosis, CAV exhibits a distinct cellular composition and lesion distribution, yet its pathogenesis remains incompletely understood. A major challenge in CAV research has been the limited application of advanced "-omics" technologies, which have revolutionized the study of other vascular diseases. Recent advancements in single-cell and spatial transcriptomics, proteomics, and metabolomics have begun to uncover the complex immune-endothelial-stromal interactions driving CAV progression. Notably, single-cell RNA sequencing has identified previously unrecognized immune cell populations and signaling pathways implicated in endothelial injury and vascular remodeling after heart transplantation. Despite these breakthroughs, studies applying these technologies to CAV remain sparse, limiting the translation of these insights into clinical practice. This review aims to bridge this gap by summarizing recent findings from single-cell and multi-omic approaches, highlighting key discoveries, and discussing their implications for understanding CAV pathogenesis.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aparnaa Ananthakrishnan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Connor W. Lantz
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Westphal SG, Mannon RB. Biomarkers of Rejection in Kidney Transplantation. Am J Kidney Dis 2025; 85:364-374. [PMID: 39419272 PMCID: PMC11846701 DOI: 10.1053/j.ajkd.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024]
Abstract
Alloimmune injury is a major cause of long-term kidney allograft failure whether due to functionally stable (subclinical) or overt clinical rejection. These episodes may be mediated by immune cells (cellular rejection) or alloantibody (antibody-mediated rejection). Early recognition of immune injury is needed for timely appropriate intervention to maintain graft functional viability. However, the conventional measure of kidney function (ie, serum creatinine) is insufficient for immune monitoring due to limited sensitivity and specificity for rejection. As a result, there is need for biomarkers that more sensitively detect the immune response to the kidney allograft. Recently, several biomarkers have been clinically implemented into the care of kidney transplant recipients. These biomarkers attempt to achieve multiple goals including (1) more sensitive detection of clinical and subclinical rejection, (2) predicting impending rejection, (3) monitoring for the adequacy of treatment response, and (4) facilitating personalized immunosuppression. In this review, we summarize the findings to date in commercially available biomarkers, along with biomarkers approaching clinical implementation. While we discuss the analytical and clinical validity of these biomarkers, we identify the challenges and limitations to widespread biomarker use, including the need for biomarker-guided prospective studies to establish evidence of clinical utility of these new assays.
Collapse
Affiliation(s)
- Scott G Westphal
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Medical Service, Nebraska Western Iowa Veterans Affairs Health Care System, Omaha, Nebraska
| | - Roslyn B Mannon
- Medical Service, Nebraska Western Iowa Veterans Affairs Health Care System, Omaha, Nebraska.
| |
Collapse
|
5
|
Gupta G, Athreya A, Kataria A. Biomarkers in Kidney Transplantation: A Rapidly Evolving Landscape. Transplantation 2025; 109:418-427. [PMID: 39020463 DOI: 10.1097/tp.0000000000005122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The last decade has seen an explosion in clinical research focusing on the use of noninvasive biomarkers in kidney transplantation. Much of the published literature focuses on donor-derived cell-free DNA (dd-cfDNA). Although initially studied as a noninvasive means of identifying acute rejection, it is now clear that dd-cfDNA is more appropriately described as a marker of severe injury and irrespective of the etiology, elevated dd-cfDNA ≥0.5% portends worse graft outcomes. Blood gene expression profiling is also commercially available and has mostly been studied in the context of early identification of subclinical rejection, although additional data is needed to validate these findings. Torque teno virus, a ubiquitous DNA virus, has emerged as a biomarker of immunosuppression exposure as peripheral blood Torque teno virus copy numbers might mirror the intensity of host immunosuppression. Urinary chemokine tests including C-X-C motif chemokine ligand 9 and C-X-C motif chemokine ligand 10 have recently been assessed in large clinical trials and hold promising potential for early diagnosis of both subclinical and acute rejection, as well as, for long-term prognosis. Urinary cellular messenger RNA and exosome vesicular RNA based studies require additional validation. Although current data does not lend itself to conclusion, future studies on multimodality testing may reveal the utility of serial surveillance for individualization of immunosuppression and identify windows of opportunity to intervene early and before the irreversible allograft injury sets in.
Collapse
Affiliation(s)
- Gaurav Gupta
- Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Akshay Athreya
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Ashish Kataria
- Division of Nephrology, Medical College of Georgia, Augusta, GA
| |
Collapse
|
6
|
Masset C, Danger R, Degauque N, Dantal J, Giral M, Brouard S. Blood Gene Signature as a Biomarker for Subclinical Kidney Allograft Rejection: Where Are We? Transplantation 2025; 109:249-258. [PMID: 38867352 DOI: 10.1097/tp.0000000000005105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The observation decades ago that inflammatory injuries because of an alloimmune response might be present even in the absence of concomitant clinical impairment in allograft function conduced to the later definition of subclinical rejection. Many studies have investigated the different subclinical rejections defined according to the Banff classification (subclinical T cell-mediated rejection and antibody-mediated rejection), overall concluding that these episodes worsened long-term allograft function and survival. These observations led several transplant teams to perform systematic protocolar biopsies to anticipate treatment of rejection episodes and possibly prevent allograft loss. Paradoxically, the invasive characteristics and associated logistics of such procedures paved the way to investigate noninvasive biomarkers (urine and blood) of subclinical rejection. Among them, several research teams proposed a blood gene signature developed from cohort studies, most of which achieved excellent predictive values for the occurrence of subclinical rejection, mainly antibody-mediated rejection. Interestingly, although all identified genes relate to immune subsets and pathways involved in rejection pathophysiology, very few transcripts are shared among these sets of genes, highlighting the heterogenicity of such episodes and the difficult but mandatory need for external validation of such tools. Beyond this, their application and value in clinical practice remain to be definitively demonstrated in both biopsy avoidance and prevention of clinical rejection episodes. Their combination with other biomarkers, either epidemiological or biological, could contribute to a more accurate picture of a patient's risk of rejection and guide clinicians in the follow-up of kidney transplant recipients.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Richard Danger
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Nicolas Degauque
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| |
Collapse
|
7
|
Ramalhete L, Araújo R, Vieira MB, Vigia E, Aires I, Ferreira A, Calado CRC. Integration of FTIR Spectroscopy and Machine Learning for Kidney Allograft Rejection: A Complementary Diagnostic Tool. J Clin Med 2025; 14:846. [PMID: 39941517 PMCID: PMC11818318 DOI: 10.3390/jcm14030846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Kidney transplantation is a life-saving treatment for end-stage kidney disease, but allograft rejection remains a critical challenge, requiring accurate and timely diagnosis. The study aims to evaluate the integration of Fourier Transform Infrared (FTIR) spectroscopy and machine learning algorithms as a minimally invasive method to detect kidney allograft rejection and differentiate between T Cell-Mediated Rejection (TCMR) and Antibody-Mediated Rejection (AMR). Additionally, the goal is to discriminate these rejection types aiming to develop a reliable decision-making support tool. Methods: This retrospective study included 41 kidney transplant recipients and analyzed 81 serum samples matched to corresponding allograft biopsies. FTIR spectroscopy was applied to pre-biopsy serum samples, and Naïve Bayes classification models were developed to distinguish rejection from non-rejection and classify rejection types. Data preprocessing involved, e.g., atmospheric compensation, second derivative, and feature selection using Fast Correlation-Based Filter for spectral regions 600-1900 cm-1 and 2800-3400 cm-1. Model performance was assessed via area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and accuracy. Results: The Naïve Bayes model achieved an AUC-ROC of 0.945 in classifying rejection versus non-rejection and AUC-ROC of 0.989 in distinguishing TCMR from AMR. Feature selection significantly improved model performance, identifying key spectral wavenumbers associated with rejection mechanisms. This approach demonstrated high sensitivity and specificity for both classification tasks. Conclusions: The integration of FTIR spectroscopy with machine learning may provide a promising, minimally invasive method for early detection and precise classification of kidney allograft rejection. Further validation in larger, more diverse populations is needed to confirm these findings' reliability.
Collapse
Affiliation(s)
- Luís Ramalhete
- Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, No. 117, 1769-001 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (R.A.)
- iNOVA4Health—Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Rúben Araújo
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (R.A.)
| | - Miguel Bigotte Vieira
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (R.A.)
- Nephrology Department, Hospital Curry Cabral, Unidade Local de Saúde São José, 1049-001 Lisbon, Portugal
| | - Emanuel Vigia
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (R.A.)
- Centro Hospitalar Universitário de Lisboa Central, Hepatobiliopancreatic and Transplantation Center—Curry Cabral Hospital, 1069-166 Lisbon, Portugal
| | - Inês Aires
- Nephrology Department, Hospital Curry Cabral, Unidade Local de Saúde São José, 1049-001 Lisbon, Portugal
| | - Aníbal Ferreira
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (R.A.)
- Nephrology Department, Hospital Curry Cabral, Unidade Local de Saúde São José, 1049-001 Lisbon, Portugal
| | - Cecília R. C. Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal;
- Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy–i4HB, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
8
|
Zhang W, Liu B, Jia D, Wang R, Cao H, Wu H, Ye Z, Gao B. Application of graft-derived cell-free DNA for solid organ transplantation. Front Immunol 2024; 15:1461480. [PMID: 39376561 PMCID: PMC11456428 DOI: 10.3389/fimmu.2024.1461480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Monitoring the status of grafts and the occurrence of postoperative complications, such as rejection, is crucial for ensuring the success and long-term survival of organ transplants. Traditional histopathological examination, though effective, is an invasive procedure and poses risks of complications, making frequent use impractical. In recent years, graft-derived cell-free DNA (gd-cfDNA) has emerged as a promising non-invasive biomarker. It not only provides early warnings of rejection and other types of graft injury but also offers important information about the effectiveness of immunosuppressive therapy and prognosis. gd-cfDNA shows potential in the monitoring of organ transplants. The early, real-time information on graft injury provided by gd-cfDNA facilitates timely individualized treatment and improves patient outcomes. However, the progress of research on gd-cfDNA varies across different organs. Therefore, this article will comprehensively review the application and findings of gd-cfDNA in monitoring various solid organs, discussing the advantages, limitations, and some future research directions to aid in its clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoshan Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Ettenger RB, Seifert ME, Blydt-Hansen T, Briscoe DM, Holman J, Weng PL, Srivastava R, Fleming J, Malekzadeh M, Pearl M. Detection of Subclinical Rejection in Pediatric Kidney Transplantation: Current and Future Practices. Pediatr Transplant 2024; 28:e14836. [PMID: 39147695 DOI: 10.1111/petr.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The successes in the field of pediatric kidney transplantation over the past 60 years have been extraordinary. Year over year, there have been significant improvements in short-term graft survival. However, improvements in longer-term outcomes have been much less apparent. One important contributor has been the phenomenon of low-level rejection in the absence of clinical manifestations-so-called subclinical rejection (SCR). METHODS Traditionally, rejection has been diagnosed by changes in clinical parameters, including but not limited to serum creatinine and proteinuria. This review examines the shortcomings of this approach, the effects of SCR on kidney allograft outcome, the benefits and drawbacks of surveillance biopsies to identify SCR, and new urine and blood biomarkers that define the presence or absence of SCR. RESULTS Serum creatinine is an unreliable index of SCR. Surveillance biopsies are the method most utilized to detect SCR. However, these have significant drawbacks. New biomarkers show promise. These biomarkers include blood gene expression profiles and donor derived-cell free DNA; urine gene expression profiles; urinary cytokines, chemokines, and metabolomics; and other promising blood and urine tests. CONCLUSION Specific emphasis is placed on studies carried out in pediatric kidney transplant recipients. TRIAL REGISTRATION ClinicalTrials.gov: NCT03719339.
Collapse
Affiliation(s)
- Robert B Ettenger
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tom Blydt-Hansen
- Multi-Organ Transplant Program, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Briscoe
- Division of Nephrology, Department of Pediatrics Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Holman
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Patricia L Weng
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rachana Srivastava
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James Fleming
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Mohammed Malekzadeh
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Meghan Pearl
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
10
|
Kataria A, Athreya A, Gupta G. Biomarkers in Kidney Transplantation. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:427-435. [PMID: 39232613 DOI: 10.1053/j.akdh.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 09/06/2024]
Abstract
Currently in the United States, there are more than 250,000 patients with a functioning kidney allograft and over 100,000 waitlisted patients awaiting kidney transplant, with a burgeoning number added to the kidney transplant wait list every year. Although early post-transplant care is delivered at the transplant center, the increasing number of kidney transplant recipients requires general nephrologists to actively participate in the long-term care of these patients. Serum creatinine and proteinuria are imperfect traditional biomarkers of allograft dysfunction and lag behind subclinical allograft injury. This manuscript reviews the various clinically available biomarkers in the field of kidney transplantation for a general nephrologist with a focus on the utility of donor-derived cell-free DNA, as a marker of early allograft injury. Blood gene expression profiling, initially studied in the context of early identification of subclinical rejection, awaits validation in larger multicentric trials. Urinary cellular messenger ribonucleic acid and chemokine CXCL10 hold promising potential for early diagnosis of both subclinical and acute rejection. Torque tenovirus, a ubiquitous DNA virus is emerging as a biomarker of immunosuppression exposure as peripheral blood torque tenovirus copy numbers might mirror the intensity of host immunosuppression. Although high-quality evidence is still being generated, evidence and recommendations are provided to aid the general nephrologist in implementation of novel biomarkers in their clinical practice.
Collapse
Affiliation(s)
| | - Akshay Athreya
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA; Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
11
|
Kalaria AL, Yamada T, Klein-Fedyshin M, Obata S, Cruz-Peralta M, Parrish B, Rahman AZ, Molinari M, Mehta RB. Subclinical rejection and allograft survival in kidney transplantation: protocol for a systematic review and meta-analysis. BMJ Open 2024; 14:e085098. [PMID: 39025816 PMCID: PMC11261677 DOI: 10.1136/bmjopen-2024-085098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Subclinical rejection (SCR) refers to the presence of acute rejection without accompanying kidney allograft dysfunction. The impact of SCR on long-term graft survival remains a subject of ongoing debate. METHODS AND ANALYSIS We will perform a systematic search of databases including MEDLINE, Embase and Cochrane Central, from January 1995 to November 2023. We will include English-language studies involving adult kidney transplant patients who investigated SCR. We will exclude studies focused on 'for-cause' biopsies. Both title, abstract screening and full-text screening will be performed by two or more reviewers. The primary outcome of this study will be death-censored allograft loss. The secondary outcome will include development of subsequent rejection. For time-dependent outcomes, we will prioritise HRs and the 95% CIs. In cases where HRs are unavailable, we will calculate risk ratios based on the recorded events. The risk of bias will be assessed using the Cochrane Collaboration's revised tool for assessing the risk of bias in randomised trials and the Newcastle-Ottawa scale for cohort studies. We will employ a random effects model. We will evaluate heterogeneity using the I2 variable. We will assess publication bias by funnel plots, Begg and Mazumdar test, and Egger's test. ETHICS AND DISSEMINATION Ethics approval does not apply as no original data will be collected. The results will be disseminated through peer-reviewed publications and conference presentations. PROSPERO REGISTRATION NUMBER CRD42023463536.
Collapse
Affiliation(s)
- Arjun Lalit Kalaria
- Division of Transplant Nephrology, Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Takayuki Yamada
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | | | - Shota Obata
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine, New York, New York, USA
| | - Massiel Cruz-Peralta
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bryce Parrish
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amaan Z Rahman
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michele Molinari
- Department of Surgery, Division of Transplantation, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Rajil B Mehta
- Division of Transplant Nephrology, Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Zaidan M, Lakkis FG. Tracking kidney transplant fitness. Science 2023; 381:1048-1049. [PMID: 37676961 DOI: 10.1126/science.adj9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
An implantable bioelectronic device detects the early signs of kidney transplant rejection in rats.
Collapse
Affiliation(s)
- Mohamad Zaidan
- Assistance Publique des Hôpitaux de Paris, INSERM, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fadi G Lakkis
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Abdulhadi T, Alrata L, Dubrawka C, Amurao G, Kalipatnapu SM, Isaac C, Rodrigues S, Flores KM, Alsabbagh DY, Alomar O, Alhamad T. Donor-derived cell free DNA as a biomarker in kidney transplantation. Pharmacogenomics 2023; 24:771-780. [PMID: 37732393 DOI: 10.2217/pgs-2023-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
The early detection of acute rejection in the allograft is important as it provides an opportunity for timely therapeutic intervention in order to preserve graft function and achieve longer graft survival. Donor-derived cell-free DNA (dd-cfDNA) has emerged as a new biomarker in the field of kidney transplantation. In this review, we used data from various studies to examine the role of dd-cfDNA in comparison to creatinine and donor-specific antibodies in the early detection of transplant rejection. We also reviewed the use of dd-cfDNA in other organ transplants as well as the challenges and potential future direction for dd-cfDNA as a diagnostic tool.
Collapse
Affiliation(s)
- Tarek Abdulhadi
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Louai Alrata
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Casey Dubrawka
- Department of Pharmacy, Barnes Jewish Hospital, St. Louis, MO 63110, USA
| | - Gwendolyn Amurao
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sri Mahathi Kalipatnapu
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Che Isaac
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelden Rodrigues
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Marie Flores
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dema Yaseen Alsabbagh
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Omar Alomar
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tarek Alhamad
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Transplant Epidemiology Research Collaboration (TERC), Institute of Public Health, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Nankivell BJ, Chapman JR. Histology versus molecular surveillance: claims and evidence. Kidney Int 2023; 104:428-432. [PMID: 37599017 DOI: 10.1016/j.kint.2022.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 08/22/2023]
Affiliation(s)
| | - Jeremy R Chapman
- Department of Renal Medicine, Westmead Hospital, Sydney, Australia
| |
Collapse
|
15
|
Sarwal MM, Naesens M. Urine trumps the protocol biopsy for subclinical rejection surveillance. Kidney Int 2023; 104:432-439. [PMID: 37599018 DOI: 10.1016/j.kint.2023.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Minnie M Sarwal
- Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, California, USA.
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Feng S, Xiang C, He Y, Li Z, Zhao Z, Liu B, Yin Z, He Q, Yang Y, Huang Z, Lin T, Li W, Duan Y. Assessment of an exhaled breath test using ultraviolet photoionization time-of-flight mass spectrometry for the monitoring of kidney transplant recipients. MOLECULAR BIOMEDICINE 2023; 4:19. [PMID: 37353649 DOI: 10.1186/s43556-023-00130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/04/2023] [Indexed: 06/25/2023] Open
Abstract
Continuous monitoring for immunosuppressive status, infection and complications are a must for kidney transplantation (KTx) recipients. Traditional monitoring including blood sampling and kidney biopsy, which caused tremendous medical cost and trauma. Therefore, a cheaper and less invasive approach was urgently needed. We thought that a breath test has the potential to become a feasible tool for KTx monitoring. A prospective-specimen collection, retrospective-blinded assessment strategy was used in this study. Exhaled breath samples from 175 KTx recipients were collected in West China Hospital and tested by online ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOF-MS). The classification models based on breath test performed well in classifying normal and abnormal values of creatinine, estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN) and tacrolimus, with AUC values of 0.889, 0.850, 0.849 and 0.889, respectively. Regression analysis also demonstrated the predictive ability of breath test for clinical creatinine, eGFR, BUN, tacrolimus level, as the predicted values obtained from the regression model correlated well with the clinical true values (p < 0.05). The findings of this investigation implied that a breath test by using UVP-TOF-MS for KTx recipient monitoring is possible and accurate, which might be useful for future clinical screenings.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Chengfang Xiang
- College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yushi He
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Zhuoya Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhongjun Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Bohan Liu
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Zhaofa Yin
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Qiyu He
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Yanting Yang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Zhongli Huang
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Tao Lin
- Department of Urology and Institute of Urology, Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Organ Transplantation Center, Chengdu, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Yixiang Duan
- School of Mechanical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
17
|
Jiménez-Coll V, El Kaaoui El Band J, Llorente S, González-López R, Fernández-González M, Martínez-Banaclocha H, Galián JA, Botella C, Moya-Quiles MR, Minguela A, Legaz I, Muro M. All That Glitters in cfDNA Analysis Is Not Gold or Its Utility Is Completely Established Due to Graft Damage: A Critical Review in the Field of Transplantation. Diagnostics (Basel) 2023; 13:1982. [PMID: 37370877 DOI: 10.3390/diagnostics13121982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
In kidney transplantation, a biopsy is currently the gold standard for monitoring the transplanted organ. However, this is far from an ideal screening method given its invasive nature and the discomfort it can cause the patient. Large-scale studies in renal transplantation show that approximately 1% of biopsies generate major complications, with a risk of macroscopic hematuria greater than 3.5%. It would not be until 2011 that a method to detect donor-derived cell-free DNA (dd-cfDNA) employing digital PCR was devised based on analyzing the differences in SNPs between the donor and recipient. In addition, since the initial validation studies were carried out at the specific moments in which rejection was suspected, there is still not a good understanding of how dd-cfDNA levels naturally evolve post-transplant. In addition, various factors, both in the recipient and the donor, can influence dd-cfDNA levels and cause increases in the levels of dd-cfDNA themselves without suspicion of rejection. All that glitters in this technology is not gold; therefore, in this article, we discuss the current state of clinical studies, the benefits, and disadvantages.
Collapse
Affiliation(s)
- Victor Jiménez-Coll
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Jaouad El Kaaoui El Band
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Santiago Llorente
- Nephrology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Rosana González-López
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Marina Fernández-González
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - José Antonio Galián
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Carmen Botella
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - María Rosa Moya-Quiles
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Manuel Muro
- Immunology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
18
|
Danger R, Le Berre L, Cadoux M, Kerleau C, Papuchon E, Mai HL, Nguyen TVH, Guérif P, Morelon E, Thaunat O, Legendre C, Anglicheau D, Lefaucheur C, Couzi L, Del Bello A, Kamar N, Le Quintrec M, Goutaudier V, Renaudin K, Giral M, Brouard S. Subclinical rejection-free diagnostic after kidney transplantation using blood gene expression. Kidney Int 2023; 103:1167-1179. [PMID: 36990211 DOI: 10.1016/j.kint.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
We previously established a six-gene-based blood score associated with operational tolerance in kidney transplantation which was decreased in patients developing anti-HLA donor-specific antibodies (DSA). Herein, we aimed to confirm that this score is associated with immunological events and risk of rejection. We measured this using quantitative PCR (qPCR) and NanoString methods from an independent multicenter cohort of 588 kidney transplant recipients with paired blood samples and biopsies at one year after transplantation validating its association with pre-existing and de novo DSA. From 441 patients with protocol biopsy, there was a significant decrease of the score of tolerance in 45 patients with biopsy-proven subclinical rejection (SCR), a major threat associated with pejorative allograft outcomes that prompted an SCR score refinement. This refinement used only two genes, AKR1C3 and TCL1A, and four clinical parameters (previous experience of rejection, previous transplantation, sex of recipient and tacrolimus uptake). This refined SCR score was able to identify patients unlikely to develop SCR with a C-statistic of 0.864 and a negative predictive value of 98.3%. The SCR score was validated in an external laboratory, with two methods (qPCR and NanoString), and on 447 patients from an independent and multicenter cohort. Moreover, this score allowed reclassifying patients with discrepancies between the DSA presence and the histological diagnosis of antibody mediated rejection unlike kidney function. Thus, our refined SCR score could improve detection of SCR for closer and noninvasive monitoring, allowing early treatment of SCR lesions notably for patients DSA-positive and during lowering of immunosuppressive treatment.
Collapse
Affiliation(s)
- Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France.
| | - Ludmilla Le Berre
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Marion Cadoux
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Clarisse Kerleau
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Emmanuelle Papuchon
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France
| | - Hoa Le Mai
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Thi-Van-Ha Nguyen
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM Unit 1111, Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM Unit 1111, Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, INSERM UMR S970, Université Paris Cité, Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, and Apheresis, CHU Bordeaux, Bordeaux, France
| | - Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Toulouse, INSERM UMR1291 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Toulouse, INSERM UMR1291 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Moglie Le Quintrec
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Lapeyronie, Montpellier, France
| | - Valentin Goutaudier
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France; Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Karine Renaudin
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes Université, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes Université, Nantes, France.
| |
Collapse
|
19
|
Donor-Derived Cell-free DNA for Personalized Immunosuppression in Renal Transplantation. Ther Drug Monit 2023; 45:20-25. [PMID: 36127770 DOI: 10.1097/ftd.0000000000001023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The long-term outcomes of solid organ transplantation remain suboptimal. Therefore, appropriate biomarkers are needed in addition to immunosuppressive drugs and other traditional approaches for graft monitoring to achieve personalized immunosuppression and reduce premature graft loss. METHODS Donor-derived cell-free DNA (dd-cfDNA) is a minimally invasive biomarker of cell death due to graft injury. It can be quantified using droplet digital polymerase chain reaction and next-generation sequencing. Fractional dd-cfDNA determination can be affected by changes in recipient cfDNA, such as those caused by leukopenia or infection, leading to false-positive or false-negative results, respectively. Absolute quantification of dd-cfDNA helps in overcoming this limitation. RESULTS Overall, there is sufficient evidence of the clinical validity of dd-cfDNA. It detects rejection episodes early at an actionable stage and reflects the severity of graft injury without being rejection-specific. Owing to its high negative predictive value, dd-cfDNA is very useful for ruling out graft injury. Dd-cfDNA complements histological findings and can help in avoiding unnecessary biopsies. It indicates a response to rejection treatment and detects underimmunosuppression. CONCLUSIONS Monitoring changes in dd-cfDNA over time may be helpful in adapting immunosuppression to prevent graft rejection. Moreover, serial dd-cfDNA determination may increase the effectiveness of transplant recipient surveillance and facilitate personalized immunosuppression when combined with other relevant clinical and diagnostic findings.
Collapse
|
20
|
Yaghoubi M, Cressman S, Edwards L, Shechter S, Doyle-Waters MM, Keown P, Sapir-Pichhadze R, Bryan S. A Systematic Review of Kidney Transplantation Decision Modelling Studies. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2023; 21:39-51. [PMID: 35945483 DOI: 10.1007/s40258-022-00744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Genome-based precision medicine strategies promise to minimize premature graft loss after renal transplantation, through precision approaches to immune compatibility matching between kidney donors and recipients. The potential adoption of this technology calls for important changes to clinical management processes and allocation policy. Such potential policy change decisions may be supported by decision models from health economics, comparative effectiveness research and operations management. OBJECTIVE We used a systematic approach to identify and extract information about models published in the kidney transplantation literature and provide an overview of the status of our collective model-based knowledge about the kidney transplant process. METHODS Database searches were conducted in MEDLINE, Embase, Web of Science and other sources, for reviews and primary studies. We reviewed all English-language papers that presented a model that could be a tool to support decision making in kidney transplantation. Data were extracted on the clinical context and modelling methods used. RESULTS A total of 144 studies were included, most of which focused on a single component of the transplantation process, such as immunosuppressive therapy or donor-recipient matching and organ allocation policies. Pre- and post-transplant processes have rarely been modelled together. CONCLUSION A whole-disease modelling approach is preferred to inform precision medicine policy, given its potential upstream implementation in the treatment pathway. This requires consideration of pre- and post-transplant natural history, risk factors for allograft dysfunction and failure, and other post-transplant outcomes. Our call is for greater collaboration across disciplines and whole-disease modelling approaches to more accurately simulate complex policy decisions about the integration of precision medicine tools in kidney transplantation.
Collapse
Affiliation(s)
- Mohsen Yaghoubi
- Department of Pharmacy Practice, Mercer University College of Pharmacy, Atlanta, USA
| | - Sonya Cressman
- Faculty of Health Sciences, Simon Fraser University, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Louisa Edwards
- School of Population and Public Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Steven Shechter
- Sauder School of Business, University of British Columbia, Vancouver, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
| | - Paul Keown
- Department of Medicine, Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Stirling Bryan
- School of Population and Public Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
21
|
Huang X, Nie F, Zhu J, Liu L, Wang N. Application value of shear-wave elastography combined with monochrome superb microvascular imaging in renal allograft chronic rejection. Clin Hemorheol Microcirc 2022; 82:303-311. [PMID: 36057814 DOI: 10.3233/ch-221443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Conventional ultrasound (US), which include gray scale US and Doppler US, is the first-line imaging modality for the evaluation of renal allograft; however, conventional US indicators have limitations. OBJECTIVE To explore the application value of shear-wave elastography (SWE) combined with monochrome superb microvascular imaging (mSMI) in renal allograft chronic rejection (CR). METHODS From November 2021 to February 2022 in the Lanzhou University Second Hospital, the US features of 54 patients with renal allograft were retrospectively analyzed. Patients were categorized into two groups: stable group(n = 44) and CR group(n = 10), with clinical diagnosis as reference standard. The vascular index (VI) on mSMI and parenchymal stiffness were measured in the middle cortex of all renal allografts and receiver operating characteristic (ROC) curves were drawn to evaluate the feasibility of differentiation. Statistically significant US features and biochemical indicators such as creatinine were scored, and the results of the scores were analyzed by ROC curve. RESULTS The VI on mSMI of the stable group (49.5±2.0) was significantly greater than that of the CR group (33.8±5.9) (P = 0.028). There was a statistically significant difference in parenchymal stiffness between stable group (16.2kPa±1.2) and CR group (33.9kPa±6.6) (P = 0.027). The sensitivity was 90% and specificity was 81.8% of the scores in the differentiation of stable group from CR group (cut-off value, 2; P = 0.000). CONCLUSION SWE combined with mSMI may help differentiate stable renal allograft from renal allograft CR and have the potential application value in the diagnosis of renal allograft CR.
Collapse
Affiliation(s)
- Xiao Huang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Ju Zhu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Luping Liu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Nan Wang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| |
Collapse
|
22
|
Mehta RB, Melgarejo I, Viswanathan V, Zhang X, Pittappilly M, Randhawa P, Puttarajappa C, Sood P, Wu C, Sharma A, Molinari M, Hariharan S. Long-term immunological outcomes of early subclinical inflammation on surveillance kidney allograft biopsies. Kidney Int 2022; 102:1371-1381. [PMID: 36049641 DOI: 10.1016/j.kint.2022.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 01/12/2023]
Abstract
The long-term impact of early subclinical inflammation (SCI) through surveillance biopsy has not been well studied. To do this, we recruited a prospective observational cohort that included 1000 sequential patients who received a kidney transplant from 2013-2017 at our center. A total of 586 patients who underwent a surveillance biopsy in their first year post-transplant were included after excluding those with clinical rejections, and those who were unable to undergo a surveillance biopsy. Patients were classified based on their biopsy findings: 282 with NSI (No Significant Inflammation) and 304 with SCI-T (SCI and Tubulitis) which was further subdivided into 182 with SC-BLR (Subclinical Borderline Changes) and 122 with SC-TCMR (Subclinical T Cell Mediated Rejection, Banff 2019 classification of 1A or more). We followed the clinical and immunological events including Clinical Biopsy Proven Acute Rejection [C-BPAR], long-term kidney function and death-censored graft loss over a median follow-up of five years. Episodes of C-BPAR were noted at a median of two years post-transplant. Adjusted odds of having a subsequent C-BPAR was significantly higher in the SCI-T group [SC-BLR and SC-TCMR] compared to NSI 3.8 (2.1-7.5). The adjusted hazard for death-censored graft loss was significantly higher with SCI-T compared to NSI [1.99 (1.04-3.84)]. Overall, SCI detected through surveillance biopsy within the first year post-transplant is a harbinger for subsequent immunological events and is associated with a significantly greater hazard for subsequent C-BPAR and death-censored graft loss. Thus, our study highlights the need for identifying patients with SCI through surveillance biopsy and develop strategies to prevent further alloimmune injuries.
Collapse
Affiliation(s)
- Rajil B Mehta
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Ivy Melgarejo
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Vignesh Viswanathan
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xingyu Zhang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Matthew Pittappilly
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Chethan Puttarajappa
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Puneet Sood
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Christine Wu
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Akhil Sharma
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michele Molinari
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sundaram Hariharan
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Edwards RL, Menteer J, Lestz RM, Baxter-Lowe LA. Cell-free DNA as a solid-organ transplant biomarker: technologies and approaches. Biomark Med 2022; 16:401-415. [PMID: 35195028 DOI: 10.2217/bmm-2021-0968] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-quality biomarkers that detect emergent graft damage and/or rejection after solid-organ transplantation offer new opportunities to improve post-transplant monitoring, allow early therapeutic intervention and facilitate personalized patient management. Donor-derived cell-free DNA (DD-cfDNA) is a particularly exciting minimally invasive biomarker because it has the potential to be quantitative, time-sensitive and cost-effective. Increased DD-cfDNA has been associated with graft damage and rejection episodes. Efforts are underway to further improve sensitivity and specificity. This review summarizes the procedures used to process and detect DD-cfDNA, measurement of DD-cfDNA in clinical transplantation, approaches for improving sensitivity and specificity and long-term prospects as a transplant biomarker to supplement traditional organ monitoring and invasive biopsies.
Collapse
Affiliation(s)
- Rebecca L Edwards
- Department of Pathology & Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jondavid Menteer
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Rachel M Lestz
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Lee Ann Baxter-Lowe
- Department of Pathology & Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
24
|
Westphal SG, Mannon RB. Emerging biomarkers in kidney transplantation and challenge of clinical implementation. Curr Opin Organ Transplant 2022; 27:15-21. [PMID: 34939960 DOI: 10.1097/mot.0000000000000941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Despite improvement in short-term outcomes after kidney transplantation, long-term outcomes remain suboptimal. Conventional biomarkers are limited in their ability to reliably identify early immunologic and nonimmunologic injury. Novel biomarkers are needed for noninvasive diagnosis of subclinical injury, prediction of response to treatment, and personalization of the care of kidney transplant recipients. RECENT FINDINGS Recent biotechnological advances have led to the discovery of promising molecular biomarker candidates. However, translating potential biomarkers from bench to clinic is challenging, and many potential biomarkers are abandoned prior to clinical implementation. Despite these challenges, several promising urine, blood, and tissue novel molecular biomarkers have emerged and are approaching incorporation into clinical practice. SUMMARY This article highlights the challenges in adopting biomarker-driven posttransplant management and reviews several promising emerging novel biomarkers that are approaching clinical implementation.
Collapse
Affiliation(s)
- Scott G Westphal
- Division of Nephrology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
25
|
Halloran PF, Einecke G, Sikosana MLN, Madill-Thomsen K. The Biology and Molecular Basis of Organ Transplant Rejection. Handb Exp Pharmacol 2022; 272:1-26. [PMID: 35091823 DOI: 10.1007/164_2021_557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Allograft rejection is defined as tissue injury in a transplanted allogeneic organ produced by the effector mechanisms of the adaptive alloimmune response. Effector T lymphocytes and IgG alloantibodies cause two different types of rejection that can occur either individually or simultaneously: T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR). In TCMR, cognate effector T cells infiltrate the graft and orchestrate an interstitial inflammatory response in the kidney interstitium in which effector T cells engage antigen-presenting myeloid cells, activating the T cells, antigen-presenting cells, and macrophages. The result is intense expression of IFNG and IFNG-induced molecules, expression of effector T cell molecules and macrophage molecules and checkpoints, and deterioration of parenchymal function. The diagnostic lesions of TCMR follow, i.e. interstitial inflammation, parenchymal deterioration, and intimal arteritis. In ABMR, HLA IgG alloantibodies produced by plasma cells bind to the donor antigens on graft microcirculation, leading to complement activation, margination, and activation of NK cells and neutrophils and monocytes, and endothelial injury, sometimes with intimal arteritis. TCMR becomes infrequent after 5-10 years post-transplant, probably reflecting adaptive mechanisms such as checkpoints, but ABMR can present even decades post-transplant. Some rejection is triggered by inadequate immunosuppression and non-adherence, challenging the clinician to target effective immunosuppression even decades post-transplant.
Collapse
Affiliation(s)
- Philip F Halloran
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Gunilla Einecke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Majid L N Sikosana
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
26
|
Garg N, Mandelbrot DA, Parajuli S, Aziz F, Astor BC, Chandraker A, Djamali A. The clinical value of donor-derived cell-free DNA measurements in kidney transplantation. Transplant Rev (Orlando) 2021; 35:100649. [PMID: 34507254 DOI: 10.1016/j.trre.2021.100649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Early diagnosis is critical to minimizing the damage rejection can do to the transplanted kidney. Donor-derived cell-free DNA (dd-cfDNA) represents non-encapsulated fragmented DNA that is continuously shed into the bloodstream from the allograft undergoing injury, with a half-life of about 30 min. This article reviews the available evidence regarding the diagnostic value of dd-cfDNA in kidney transplantation, as a result of which two assays, Allosure and Prospera, have garnered Medicare approval. We provide information on important scenarios and contexts including antibody-mediated rejection, T-cell mediated rejection, pre-test probability of rejection, timing of the test, repeat transplants, and background cell-free DNA levels to help our understanding of the test characteristics and utility of these assays in clinical practice. Data on multimodality assays including gene expression profiles and serial monitoring of dd-cfDNA in high risk situations are emerging.
Collapse
Affiliation(s)
- Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Didier A Mandelbrot
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Brad C Astor
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Transplant Surgery, University of Wisconsin School of Medicine and Public Health Madison, WI, USA.
| |
Collapse
|
27
|
Allred ET, Crane CR, Ingulli EG. Three-month protocol biopsies do not detect subclinical rejection in pediatric kidney transplant recipients at a single center. TRANSPLANTATION REPORTS 2021. [DOI: 10.1016/j.tpr.2021.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Chopra B, Sureshkumar KK. Emerging role of cell-free DNA in kidney transplantation. World J Exp Med 2021; 11:55-65. [PMID: 34877265 PMCID: PMC8611196 DOI: 10.5493/wjem.v11.i5.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Monitoring kidney transplants for rejection conventionally includes serum creatinine, immunosuppressive drug levels, proteinuria, and donor-specific antibody (DSA). Serum creatinine is a late marker of allograft injury, and the predictive ability of DSA regarding risk of rejection is variable. Histological analysis of an allograft biopsy is the standard method for diagnosing rejection but is invasive, inconvenient, and carries risk of complications. There has been a long quest to find a perfect biomarker that noninvasively predicts tissue injury caused by rejection at an early stage, so that diagnosis and treatment could be pursued without delay in order to minimize irreversible damage to the allograft. In this review, we discuss relatively novel research on identifying biomarkers of tissue injury, specifically elaborating on donor-derived cell-free DNA, and its clinical utility.
Collapse
Affiliation(s)
- Bhavna Chopra
- Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, PA 15212, United States
| | - Kalathil K Sureshkumar
- Division of Nephrology, Department of Medicine, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, United State
| |
Collapse
|
29
|
Danovitch GM, Bunnapradist S, Cohen D, Hariharan S, McKay D, Ratner L, Stegall MD, Steiner RW, Stock PG, Vincenti F. Tests for the noninvasive diagnosis of kidney transplant rejection should be evaluated by kidney transplant programs. Am J Transplant 2021; 21:3811. [PMID: 34080294 DOI: 10.1111/ajt.16711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Gabriel M Danovitch
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Suphamai Bunnapradist
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David Cohen
- Department of Surgery, Columbia University Medical School, New York, New York, USA
| | - Sundaram Hariharan
- Starzl Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dianne McKay
- Department of Immunology and Microbiology, Scripps Research, San Diego, California, USA
| | - Lloyd Ratner
- Department of Surgery, Columbia University Medical School, New York, New York, USA
| | - Mark D Stegall
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W Steiner
- Department of Medicine, University of California at San Diego, San Diego, California, USA
| | - Peter G Stock
- Department of Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Flavio Vincenti
- Department of Surgery, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Lum EL, Nieves-Borrero K, Homkrailas P, Lee S, Danovitch G, Bunnapradist S. Title: Single center experience comparing two clinically available donor derived cell free DNA tests and review of literature. TRANSPLANTATION REPORTS 2021. [DOI: 10.1016/j.tpr.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Affiliation(s)
- Sundaram Hariharan
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Ajay K Israni
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Gabriel Danovitch
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| |
Collapse
|
32
|
Donor-derived Cell-free DNA in Solid-organ Transplant Diagnostics: Indications, Limitations, and Future Directions. Transplantation 2021; 105:1203-1211. [PMID: 33534526 DOI: 10.1097/tp.0000000000003651] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last few years have seen an explosion in clinical research focusing on the use of donor-derived cell-free DNA (dd-cfDNA) in solid-organ transplants (SOT). Although most of the literature published so far focuses on kidney transplants, there are several recent as well as ongoing research studies on heart, lung, pancreas, and liver transplants. Though initially studied as a noninvasive means of identifying subclinical or acute rejection in SOT, it is rapidly becoming clear that instead of being a specific marker for allograft rejection, dd-cfDNA is more appropriately described as a marker of severe injury, although the most common cause of this injury is allograft rejection. Multiple studies in kidney transplants have shown that although sensitivity for the diagnosis of antibody-mediated rejection is excellent, it is less so for T-cell-mediated rejection. It is possible that combining dd-cfDNA with other novel urine- or blood-based biomarkers may increase the sensitivity for the diagnosis of rejection. Irrespective of the cause, though, elevated dd-cfDNA seems to portend adverse allograft prognosis and formation of de novo donor-specific antibody. Although current data do not lend themselves to a clear conclusion, ongoing studies may reveal the utility of serial surveillance for the management of SOT as following levels of dd-cfDNA over time may provide windows of opportunity to intervene early and before irreversible allograft injury. Finally, cost-effectiveness studies will be needed to guide the ideal incorporation of dd-cfDNA into routine clinical practice.
Collapse
|