1
|
Guo H, Yuan H, Yu Y, Sun J, Sun Y, Tang Y, Zheng F. Role of skin-homing t-cells in recurrent episodes of atopic dermatitis: a review. Front Immunol 2025; 16:1489277. [PMID: 40040698 PMCID: PMC11876967 DOI: 10.3389/fimmu.2025.1489277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing disease with complex pathogenesis. Among them, inflammation is one of the primary pathogenesis of AD. AD is characterized by infiltration of lymphocytes into the skin's dermis, and the skin homing of lymphocytes plays an essential role in the recurrence of AD. Currently, there is more and more evidence to support this view. This article reviews the relevant role of T lymphocyte skin-homing-related molecules in the recurrence of AD to provide a reference for the cure of AD.
Collapse
Affiliation(s)
- Huimin Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Katagiri R, Matsuo S, Ikegami H, Kaneko A, Arima A, Chiba S, Sasaki M. Pre- and Postnatal Development Study of Nemolizumab, a Humanized Anti-Interleukin-31 Receptor A Monoclonal Antibody, in Cynomolgus Monkey. Birth Defects Res 2025; 117:e2442. [PMID: 39868832 DOI: 10.1002/bdr2.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Nemolizumab, a humanized monoclonal antibody against interleukin-31 receptor A (IL-31RA), is used to treat atopic dermatitis and prurigo nodularis. These inflammatory skin diseases affect a wide range of age groups, including pregnant women and children; however, little is known about their biological effects on pre- and postnatal development. Therefore, we report and discuss the results of an enhanced pre- and postnatal development study in cynomolgus monkeys treated with nemolizumab, which also incorporates an assessment of juvenile toxicities. METHODS Nemolizumab was subcutaneously administered at doses of 1 or 25 mg/kg to pregnant cynomolgus monkeys once every 2 weeks (biweekly) from Gestation Day 20 until delivery, to investigate the potential toxicities on pre- and postnatal development. Additionally, their offspring were subcutaneously dosed biweekly with 1 or 25 mg/kg from approximately 1 to 7 months after birth to investigate the potential toxicities on juveniles, considering the age of the target patient population. The examination included tests for immune function and nervous system involvement by IL-31, as well as the standard assessments outlined in the ICH S5 guideline to comprehensively assess the safety profile. RESULTS No nemolizumab-related toxicities were observed in both dams and offspring up to 25 mg/kg. Maternal plasma nemolizumab concentrations were well maintained during the gestation period, gradually decreasing after delivery. Plasma concentrations in the offspring, higher than in dams, was maintained until scheduled necropsy. CONCLUSION Blocking IL-31 signaling with repeated dosing of nemolizumab did not adversely affect pregnancy, parturition, nursing, or postnatal physical and functional development in cynomolgus monkeys.
Collapse
Affiliation(s)
- Ryuichi Katagiri
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., Chuo, Japan
| | - Saori Matsuo
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., Chuo, Japan
| | - Hisashi Ikegami
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., Chuo, Japan
| | - Akihisa Kaneko
- Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., Chuo, Japan
| | - Akihiro Arima
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories Ltd., Kagoshima, Japan
| | - Shuichi Chiba
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., Chuo, Japan
| | - Masanori Sasaki
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., Chuo, Japan
| |
Collapse
|
3
|
Patel J, Deng J, Kambala A, Lee KK, Cornman HL, Parthasarathy V, Pritchard T, Chen S, Hernandez AG, Shin S, Oladipo OO, Kwatra MM, Ho WJ, Kwatra SG. Spatial Mass Cytometry-Based Single-Cell Imaging Reveals a Disrupted Epithelial-Immune Axis in Prurigo Nodularis. J Invest Dermatol 2024; 144:2501-2512.e4. [PMID: 38522569 PMCID: PMC11957547 DOI: 10.1016/j.jid.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 03/26/2024]
Abstract
Prurigo nodularis (PN) is a chronic, inflammatory skin condition that disproportionately affects African Americans and features intensely pruritic, hyperkeratotic nodules on the extremities and trunk. PN is understudied compared with other inflammatory skin diseases, with the spatial organization of the cutaneous infiltrate in PN yet to be characterized. In this work, we employ spatial imaging mass cytometry to visualize PN lesional skin inflammation and architecture with single-cell resolution through an unbiased machine learning approach. PN lesional skin has increased expression of caspase 3, NF-kB, and phosphorylated signal transducer and activator of transcription 3 compared with healthy skin. Keratinocytes in lesional skin are subdivided into CD14+CD33+, CD11c+, CD63+, and caspase 3-positive innate subpopulations. CD14+ macrophage populations expressing phosphorylated extracellular signal-regulated kinase 1/2 correlate positively with patient-reported itch (P = .006). Hierarchical clustering reveals a cluster of patients with PN with greater atopy, increased NF-kB+ signal transducer and activator of transcription 3-positive phosphorylated extracellular signal-regulated kinase 1/2-positive monocyte-derived myeloid dendritic cells, and increased vimentin expression (P < .05). Neighborhood analysis finds interactions between CD14+ macrophages, CD3+ T cells, monocyte-derived myeloid dendritic cells, and keratinocytes expressing innate immune markers. These findings highlight phosphorylated extracellular signal-regulated kinase-positive CD14+ macrophages as contributors to itch and suggest an epithelial-immune axis in PN pathogenesis.
Collapse
Affiliation(s)
- Jay Patel
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Rochester, Rochester, New York, USA
| | - Junwen Deng
- Department of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anusha Kambala
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah L Cornman
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Pritchard
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shihua Chen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexei G Hernandez
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Shin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olusola O Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Convergence Institute, Johns Hopkins University, Baltimore, Maryland, USA; Mass Cytometry Facility, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
5
|
Yamamura Y, Nakashima C, Otsuka A. Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human. Front Med (Lausanne) 2024; 11:1342176. [PMID: 38590314 PMCID: PMC10999685 DOI: 10.3389/fmed.2024.1342176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
The pathogenesis of atopic dermatitis (AD) is understood to be crucially influenced by three main factors: dysregulation of the immune response, barrier dysfunction, and pruritus. In the lesional skin of AD, various innate immune cells, including Th2 cells, type 2 innate lymphoid cells (ILC2s), and basophils, produce Th2 cytokines [interleukin (IL)-4, IL-5, IL-13, IL-31]. Alarmins such as TSLP, IL-25, and IL-33 are also produced by epidermal keratinocytes, amplifying type 2 inflammation. In the chronic phase, not only Th2 cells but also Th22 and Th17 cells increase in number, leading to suppression of filaggrin expression by IL-4, IL-13, and IL-22, which further deteriorates the epidermal barrier function. Dupilumab, which targets IL-4 and IL-13, has shown efficacy in treating moderate to severe AD. Nemolizumab, targeting IL-31RA, effectively reduces pruritus in AD patients. In addition, clinical trials with fezakinumab, targeting IL-22, have demonstrated promising results, particularly in severe AD cases. Conversely, in murine models of AD, several cytokines, initially regarded as promising therapeutic targets, have not demonstrated sufficient efficacy in clinical trials. IL-33 has been identified as a potent activator of immune cells, exacerbating AD in murine models and correlating with disease severity in human patients. However, treatments targeting IL-33 have not shown sufficient efficacy in clinical trials. Similarly, thymic stromal lymphopoietin (TSLP), integral to type 2 immune responses, induces dermatitis in animal models and is elevated in human AD, yet clinical treatments like tezepelumab exhibit limited efficacy. Therapies targeting IL-1α, IL-5, and IL-17 also failed to achieve sufficient efficacy in clinical trials. It has become clear that for treating AD, IL-4, IL-13, and IL-31 are relevant therapeutic targets during the acute phase, while IL-22 emerges as a target in more severe cases. This delineation underscores the necessity of considering distinct pathophysiological aspects and therapeutic targets in AD between mouse models and humans. Consequently, this review delineates the distinct roles of cytokines in the pathogenesis of AD, juxtaposing their significance in human AD from clinical trials against insights gleaned from AD mouse models. This approach will improve our understanding of interspecies variation and facilitate a deeper insight into the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Chisa Nakashima
- Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | | |
Collapse
|
6
|
Saito LM, Ortiz RC, Amôr NG, Lopes NM, Buzo RF, Garlet GP, Rodini CO. NK cells and the profile of inflammatory cytokines in the peripheral blood of patients with advanced carcinomas. Cytokine 2024; 174:156455. [PMID: 38043142 DOI: 10.1016/j.cyto.2023.156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Natural killer (NK) cells are one of the most crucial immune cells that mediate the antitumoral response due to their ability to immediately recognize and eliminate transformed cells. Because of their great cytotoxic activity, the function of NK cells must be robustly regulated to avoid tissue damage. Such regulation is mediated by a coordinated engagement of activating (NKp46) and inhibitory (CD158b) receptors, which tumor cells may use to escape from immunosurveillance. Also, NK cells are generally divided based on surface molecules, such as CD16 and CD56, and can be classified as CD56brightCD16- (regulatory) and CD56dimCD16+ (cytotoxic) NK cells. Here, we aimed to evaluate the frequency and phenotype of circulating NK cells in patients with advanced carcinomas, as well as their systemic cytokine/chemokine and growth factors production. METHODS Peripheral blood was collected from 24 patients with advanced solid cancer during or after treatment and from 10 healthy donors. The frequency and the expression of activating (NKp46) and inhibitory (CD158b) molecules of CD56brightCD16- and CD56dimCD16+ NK cells were assessed by flow cytometry and the multiplex Luminex platform was used to quantify the secreted factors in peripheral blood serum. RESULTS Cancer patients had a lower frequency of the cytotoxic CD56dim CD16+ NK cells subset in comparison with healthy controls. Also, the regulatory CD56bright CD16- NKs isolated from cancer patients exhibited a significantly lower expression of NKp46. Among 29 immunological and growth factors analyzed in the peripheral blood of oncologic patients, MCP-1, IP-10, and eotaxin, and VEGF they have presented a higher proportion. The Pearson correlation test showed that IL-12p40 positively correlates with CD56brightCD16- NK cells. We also observed a positive correlation between MCP-1 and the activating marker NKp46, as well as a negative correlation between IP-10 and TNF-α and NKp46. CD158b expression in CD56dimCD16+ was positively correlated with EGF and negatively correlated with MIP-1β. CONCLUSIONS Taken together, these results suggest that cancer patients present a shift towards a poorly cytotoxic and less activated NK profile which may contribute to tumor development and progression. The understanding of NK cell biology and soluble factors during tumor development could aid in the design of possible targeting therapeutic approaches.
Collapse
Affiliation(s)
- Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil; Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), São Paulo, Brazil.
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
7
|
Chiocchetti R, Salamanca G, De Silva M, Gobbo F, Aspidi F, Cunha RZ, Galiazzo G, Tagliavia C, Sarli G, Morini M. Cannabinoid receptors in the inflammatory cells of canine atopic dermatitis. Front Vet Sci 2022; 9:987132. [PMID: 36187821 PMCID: PMC9521433 DOI: 10.3389/fvets.2022.987132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common cutaneous inflammatory and pruritic diseases in dogs. Considering its multifactorial nature, AD can be a challenging disease to manage, and the therapeutic strategy must often be multimodal. In recent years, research has been moving toward the use of natural products which have beneficial effects on inflammation and itching, and no side effects. Cannabinoid receptors have been demonstrated to be expressed in healthy and diseased skin; therefore, one of the potential alternative therapeutic targets for investigating AD is the endocannabinoid system (ECS). Objective To immunohistochemically investigate the expression of the cannabinoid receptor type 2 (CB2R), and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in mast cells (MCs), macrophages, dendritic cells (DCs), T cells, and neutrophils of the skin of dogs with AD. Animals Samples of skin tissues were collected from eight dogs with AD (AD-dogs). Materials and methods The immunofluorescent stained cryosections of the skins of 8 dogs with AD having antibodies against CB2R, GPR55, TRPV1, TRPA1 were semiquantitatively evaluated. The inflammatory cells were identified using antibodies against tryptase (mast cells), ionized calcium binding adaptor molecule 1 (IBA1) (macrophages/DCs), CD3 (T cells), and calprotectin (neutrophils). The proportions of MCs, macrophages/DCs, T cells, and neutrophils expressing CB2R, GPR55, TRPV1 and TRPA1 were evaluated. Results The cells of the inflammatory infiltrate showed immunoreactivity (IR) for all or for some of the cannabinoid and cannabinoid-related receptors studied. In particular, MCs and macrophages/DCs showed CB2R-, GPR55-, TRPA1-, and TRPV1-IR; T cells showed CB2R-, GPR55- and TRPA1-IR, and neutrophils expressed GPR55-IR. Co-localization studies indicated that CB2R-IR was co-expressed with TRPV1-, TRPA1-, and GPR55-IR in different cellular elements of the dermis of the AD-dogs. Conclusions and clinical importance Cannabinoid receptor 2, and cannabinoid-related receptors GPR55, TRPV1 and TRPA1 were widely expressed in the inflammatory infiltrate of the AD-dogs. Based on the present findings, the ECS could be considered to be a potential therapeutic target for dogs with AD, and may mitigate itch and inflammation.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Aspidi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, Teramo, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
IL-31: State of the Art for an Inflammation-Oriented Interleukin. Int J Mol Sci 2022; 23:ijms23126507. [PMID: 35742951 PMCID: PMC9223565 DOI: 10.3390/ijms23126507] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin 31 belongs to the IL-6 superfamily, and it is an itch mediator already studied in several diseases, comprising atopic dermatitis, allergic pathologies, and onco-hematological conditions. This research aims to assess the role of this cytokine in the pathogenesis of these conditions and its potential therapeutic role. The research has been conducted on articles, excluding reviews and meta-analysis, both on animals and humans. The results showed that IL-31 plays a crucial role in the pathogenesis of systemic skin manifestations, prognosis, and itch severity. Traditional therapies target this interleukin indirectly, but monoclonal antibodies (Mab) directed against it have shown efficacy and safety profiles comparable with biological drugs that are already available. Future perspectives could include the development of new antibodies against IL-31 both for humans and animals, thus adding a new approach to the therapy, which often has proven to be prolonged and specific for each patient.
Collapse
|
9
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Interleukin-31 and Pruritic Skin. J Clin Med 2021; 10:jcm10091906. [PMID: 33924978 PMCID: PMC8124688 DOI: 10.3390/jcm10091906] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Skin inflammation often evokes pruritus, which is the major subjective symptom in many inflammatory skin diseases such as atopic dermatitis and prurigo nodularis. Pruritus or itch is a specific sensation found only in the skin. Recent studies have stressed the pivotal role played by interleukin-31 (IL-31) in the sensation of pruritus. IL-31 is produced by various cells including T helper 2 cells, macrophages, dendritic cells and eosinophils. IL-31 signals via a heterodimeric receptor composed of IL-31 receptor A (IL-31RA) and oncostatin M receptor β. Recent clinical trials have shown that the anti-IL-31RA antibody nemolizumab can successfully decrease pruritus in patients with atopic dermatitis and prurigo nodularis. The IL-31 pathway and pruritic skin are highlighted in this review article.
Collapse
|
11
|
Nemmer JM, Kuchner M, Datsi A, Oláh P, Julia V, Raap U, Homey B. Interleukin-31 Signaling Bridges the Gap Between Immune Cells, the Nervous System and Epithelial Tissues. Front Med (Lausanne) 2021; 8:639097. [PMID: 33644104 PMCID: PMC7902767 DOI: 10.3389/fmed.2021.639097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pruritus represents one of the most common symptoms in dermatology and general medicine. Chronic pruritus severely impairs the quality of life of affected patients. During the last two decades a number of modulators and mediator of pruritus have been identified. Recently, Interleukin (IL)-31 and its receptor complex attracted significant interest, as clinical phase two studies demonstrated therapeutic efficacy of the neutralizing IL-31 receptor A (IL-31RA) antibody nemolizumab in patients suffering from atopic dermatitis or prurigo nodularis. IL-31 has also been shown to play relevant roles in allergic contact dermatitis, urticaria, mastocytosis, allergic rhinitis and asthma. Here, we summarize the current knowledge of the novel cytokine IL-31 and its receptor regarding cellular origin, regulation, signaling pathways and their involvement in biological processes such as pruritus, neuronal growth, inflammation, barrier dysfunction and tissue remodeling.
Collapse
Affiliation(s)
- Jana Maria Nemmer
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marcus Kuchner
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angeliki Datsi
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapy, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Péter Oláh
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Dermatology, Venereology and Oncodermatology, Medical Faculty, University of Pécs, Pécs, Hungary
| | | | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Department of Dermatology, University of Oldenburg, Oldenburg, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Interleukin-31, a Potent Pruritus-Inducing Cytokine and Its Role in Inflammatory Disease and in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:111-127. [PMID: 33559859 DOI: 10.1007/978-3-030-55617-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Substantial new information has emerged supporting the fundamental role of the cytokine interleukin-31 (IL-31) in the genesis of chronic pruritus in a broad array of clinical conditions. These include inflammatory conditions, such as atopic dermatitis and chronic urticaria, to autoimmune conditions such as dermatomyositis and bullous pemphigoid, to the lymphoproliferative disorders of Hodgkin's disease and cutaneous T-cell lymphoma. IL-31 is produced in greatest quantity by T-helper type 2 (Th2) cells and upon release, interacts with a cascade of other cytokines and chemokines to lead to pruritus and to a proinflammatory environment, particularly within the skin. Antibodies which neutralize IL-31 or which block the IL-31 receptor may reduce or eliminate pruritus and may diminish the manifestations of chronic cutaneous conditions associated with elevated IL-31. The role of IL-31 in these various conditions will be reviewed.
Collapse
|
13
|
A Phytocomplex Consisting of Tropaeolum majus L. and Salvia officinalis L. Extracts Alleviates the Inflammatory Response of Dermal Fibroblasts to Bacterial Lipopolysaccharides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8516153. [PMID: 32566105 PMCID: PMC7261326 DOI: 10.1155/2020/8516153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Background The antimicrobial activity and effects of a phytocomplex consisting of Tropaeolum flos (T) and Salviae folium (S) extracts on the cytokine levels and transcription factors on dermal fibroblast BJ exposed to bacterial lipopolysaccharides were examined. Methods In order to select the most optimal combination ratio of the two extracts for using in vitro, the physicochemical characterization of vegetal extract mixtures was performed and the antioxidant and antibacterial activities were evaluated on five different formulations of T : S, namely, 1 : 1, 1 : 2, 2 : 1, 3 : 1, and 1 : 3. The best combination of bioactive compounds with regard to antioxidant and antibacterial activities (T : S 1 : 2) was selected for in vitro evaluation of the anti-inflammatory effect. Human dermal fibroblast BJ cells were treated with two doses of the extract mixture and then exposed to bacterial lipopolysaccharides (LPS). The levels of the cytokines involved in inflammatory response, namely, interleukin- (IL-) 6, tumor necrosis factor- (TNF-) α, IL-31, and IL-33, were quantified by ELISA, and the expression of transcription factors, namely, signal transducer and activator of transcription (STAT) 3, nuclear factor kappa B (NFκB), and phosphorylated NFκB (pNFκB), were evaluated by western blot analysis. Results The results have shown that the mixture of T : S 1 : 2 exhibited significant antibacterial effects on Staphylococcus aureus ATCC 25923. LPS exposure increased the cytokine levels in BJ cells and enhanced the NFκB expression. The pretreatment of BF cells exposed to LPS with the two doses of the extract mixture markedly inhibited the increase of IL-33 and TNF-α levels and amplified the NFκB expression and its activation, especially with the high dose. The low doses of the extract reduced NFκB expression but increased its activation. Conclusions These experimental findings suggest that the mixture of T : S 1 : 2 can exert some protection against bacterial infections and inflammation induced by LPS in BJ cells being a good therapeutic option in related conditions associated with inflammation.
Collapse
|
14
|
Miake S, Tsuji G, Takemura M, Hashimoto-Hachiya A, Vu YH, Furue M, Nakahara T. IL-4 Augments IL-31/IL-31 Receptor Alpha Interaction Leading to Enhanced Ccl 17 and Ccl 22 Production in Dendritic Cells: Implications for Atopic Dermatitis. Int J Mol Sci 2019; 20:ijms20164053. [PMID: 31434203 PMCID: PMC6719908 DOI: 10.3390/ijms20164053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
Abstract
Severe pruritus is a characteristic feature of atopic dermatitis (AD) and is closely related to its activity. Recent studies have shown that IL-31 is a key determinant of pruritus in AD. Anti-IL-31 receptor alpha (IL-31RA) antibody treatment has also been reported to improve pruritus clinically, subsequently contributing to the attenuation of AD disease activity. Therefore, IL-31 has been thought to be an important cytokine for regulating pruritus and AD disease activity; however, how IL-31 is involved in the immune response in AD has remained largely unknown. Epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) derived from bone marrow cells have been reported to play a critical role in AD pathogenesis. LCs and DCs produce Ccl 17 and Ccl 22, which chemoattract Th2 cells, leading to AD development. Therefore, we aimed to clarify how IL-31/IL-31RA interaction affects Ccl 17 and Ccl 22 production. To test this, we analyzed murine bone marrow-derived DCs (BMDCs) stimulated with IL-4, an important cytokine in AD development. We found that IL-31RA expression was upregulated by IL-4 stimulation in a dose-dependent manner in BMDCs. Furthermore, IL-31 upregulates Ccl 17 and Ccl 22 production in the presence of IL-4, whereas IL-31 stimulation alone did not produce Ccl 17 and Ccl 22. These findings suggest that IL-4 mediates IL-31RA expression and IL-31/IL-31RA interaction augments Ccl 17 and Ccl 22 production in BMDCs, which promotes Th2-deviated immune response in AD. Since we previously reported that soybean tar Glyteer, an aryl hydrocarbon receptor (AHR) ligand, impairs IL-4/Stat 6 signaling in BMDCs, we examined whether Glyteer affects IL-31RA expression induced by IL-4 stimulation. Glyteer inhibited upregulation of IL-31RA expression induced by IL-4 stimulation in a dose-dependent manner. Glyteer also inhibited Ccl 17 and Ccl 22 production induced by IL-4 and IL-31 stimulation. Taken together, these findings suggest that Glyteer treatment may improve AD disease activity by impairing IL-31/IL-31RA interaction in DCs.
Collapse
Affiliation(s)
- Sho Miake
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Yen Hai Vu
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Huang J, Yue H, Jiang T, Gao J, Shi Y, Shi B, Wu X, Gou X. IL-31 plays dual roles in lung inflammation in an OVA-induced murine asthma model. Biol Open 2019; 8:bio.036244. [PMID: 30647024 PMCID: PMC6361213 DOI: 10.1242/bio.036244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Interleukin 31 (IL-31) is a four-helix cytokine made predominantly by Th2 CD4+ T cells. It was initially identified as being associated with the promotion of atopic dermatitis, where increased levels of IL-31 levels have been found and IL-31 induced the expression of proinflammatory cytokines and chemokines in a human bronchial epithelial cell line. However, subsequent study has shown that IL-31RA knockout mice developed exacerbated type 2 inflammation in the lung following infection with Schistosoma mansoni eggs. In this study, we investigated the dynamic expression of IL-31 and IL-31RA during eight consecutive ovalbumin (OVA) challenges and measured the chemokines from lung alveolar epithelial cells induced by IL-31. In addition, we examined the effect deletion of IL-31RA has on lung inflammation and the differentiation of CD4+ T cells. Our results demonstrate that the expression of IL-31 and IL-31RA was elevated after each weekly OVA challenge, although slightly less of both observed after the first week of OVA challenge. IL-31 also promoted the expression of inflammatory chemokines CCL5, CCL6, CCL11, CCL16, CCL22, CCL28, CX3CL1, CXCL3, CXCL14 and CXCL16 in alveolar epithelial cells. Migration of macrophages and T cells was enhanced by culture supernatants of IL-31-stimulated alveolar epithelial cells. Lastly, and in contrast to the IL-31 results, mice deficient in IL-31RA developed exacerbated lung inflammation, increased IL-4-positive cell infiltrates and elevated Th2 cytokine responses in draining lymph nodes. The proliferation of IL-31RA-/- CD4+ T cells was enhanced in vitro after anti-CD3/anti-CD28 antibody stimulation. These data indicate that IL-31/IL-31RA may play dual roles, first as an early inflammatory mediator promoting the secretion of chemokines to recruit inflammatory cells, and subsequently as a late inflammatory suppressor, limiting Th2 cytokine responses in allergic asthma.
Collapse
Affiliation(s)
- Junqiong Huang
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China .,School of Laboratory Medicine, Zunyi Medical University, Zunyi 563099, China
| | - Huan Yue
- Medical Laboratory, First People Hospital of Zunyi, Zunyi 563000, China
| | - Tao Jiang
- Infectious Disease Department, First People Hospital of Zunyi, Zunyi 563000, China
| | - Jing Gao
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Yu Shi
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Bin Shi
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563099, China
| | - Xiaoxue Wu
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Xiaoqin Gou
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| |
Collapse
|
16
|
Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, Kabashima K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 2018; 19:1286-1298. [PMID: 30446754 DOI: 10.1038/s41590-018-0256-2] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
The skin provides both a physical barrier and an immunologic barrier to external threats. The protective machinery of the skin has evolved to provide situation-specific responses to eliminate pathogens and to provide protection against physical dangers. Dysregulation of this machinery can give rise to the initiation and propagation of inflammatory loops in the epithelial microenvironment that result in inflammatory skin diseases in susceptible people. A defective barrier and microbial dysbiosis drive an interleukin 4 (IL-4) loop that underlies atopic dermatitis, while in psoriasis, disordered keratinocyte signaling and predisposition to type 17 responses drive a pathogenic IL-17 loop. Here we discuss the pathogenesis of atopic dermatitis and psoriasis in terms of the epithelial immune microenvironment-the microbiota, keratinocytes and sensory nerves-and the resulting inflammatory loops.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniel H Kaplan
- Department of Dermatology and Department of Immunology, Cutaneous Biology Research Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| |
Collapse
|
17
|
Nakahara T, Furue M. Nemolizumab and Atopic Dermatitis: the Interaction Between Interleukin-31 and Interleukin-31 Receptor as a Potential Therapeutic Target for Pruritus in Patients With Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Novel systemic drugs in treatment of atopic dermatitis: results from phase II and phase III studies published in 2017/2018. Curr Opin Allergy Clin Immunol 2018; 18:432-437. [DOI: 10.1097/aci.0000000000000477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Gu X, Wei C, Zhu X, Lu F, Sheng B, Zang X. Effect of interleukin-31 on septic shock through regulating inflammasomes and interleukin-1β. Exp Ther Med 2018; 16:171-177. [PMID: 29896237 PMCID: PMC5995029 DOI: 10.3892/etm.2018.6181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
Sepsis with severe systemic inflammation remains a great challenge for the intensive care unit in clinics. Although biomarkers have been identified to diagnose, monitor and predict these syndromes, novel therapeutic approaches are required for the amelioration of symptoms of sepsis and septic shock. The present study demonstrated that interleukin (IL)-31 was able reduce the mortality rate of lipopolysaccharide (LPS)-induced sepsis with the reduction of inflammatory cytokines in the sera. IL-31 also inhibited IL-1β production in the peritoneal lavage fluid in LPS-induced or cecal ligation and puncture-induced sepsis. The in vitro mechanism responsible for IL-31 regulation on peritoneal IL-1β activation following LPS challenge was explored. It was demonstrated that IL-1β secretion was suppressed by IL-31 treatment from LPS-challenged peritoneal macrophages following adenosine triphosphate stimulation, which is an activator of NLR family, pyrin domain-containing 3 (NLRP3). Furthermore, IL-31 inhibited the expression of NLRP3 at the transcriptional level. In human THP-1 cells, anti-IL-31/anti-IL-31 receptor (R) neutralizing antibody enhanced NLRP3 expression as well as IL-1β activation, suggesting a role of the IL-31-IL-31R-NLRP3-IL-1β signaling axis in the physiological status of sepsis. On the other hand, IL-31 displayed a negative effect on the NLRP1 inflammasome, but not on NLRP3 on the LPS-primed human peripheral blood monocytes, resulting in reduction of the inflammatory cytokine, tumor necrosis factor (TNF)-α, in the supernatant. Taken together, the present data implied that T helper 2-type cytokine, IL-31, may be a promising therapeutic option for treatment of sepsis and septic shock in clinics.
Collapse
Affiliation(s)
- Xuyun Gu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Chen Wei
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xishan Zhu
- Department of Cancer Chemotherapy, Peking University First Hospital, Beijing 100038, P.R. China
| | - Feiping Lu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Bo Sheng
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xuefeng Zang
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
20
|
Increase In Il-31 Serum Levels Is Associated With Reduced Structural Damage In Early Axial Spondyloarthritis. Sci Rep 2018; 8:7731. [PMID: 29769586 PMCID: PMC5956108 DOI: 10.1038/s41598-018-25722-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/29/2018] [Indexed: 11/22/2022] Open
Abstract
In spondyloarthritis, little is known about the relation between circulating cytokines and patient phenotype. We have quantified serum levels of T helper type 1 cell (Th1), Th2 and Th17 cytokines in patients with recent-onset axial spondyloarthritis (AxSpA) from the DESIR cohort, a prospective, multicenter French cohort consisting of 708 patients with recent-onset inflammatory back pain (duration >3 months but <3 years) suggestive of AxSpA. Serum levels of Th1, Th2, and Th17 cytokines were assessed at baseline in patients from the DESIR cohort fulfilling the ASAS criteria (ASAS+) and were compared with age- and sex-matched healthy controls. At baseline, ASAS+ patients (n = 443) and healthy controls (n = 79) did not differ in levels of most of the Th1, Th2 and Th17 cytokines except for IL-31, and sCD40L, which were significantly higher for ASAS+ patients than controls (p < 0.001 and p = 0.012, respectively). On multivariable analysis of ASAS+ patients, IL-31 level was associated with sCD40L level (p < 0.0001), modified Stoke AS Spine Score (mSASSS) < 1 (p = 0.035). The multivariable analyses showed that IL-31 was an independent factor associated with mSASSS < 1 (p = 0.001) and low bone mineral density (p = 0.01). Increased level of IL-31 might protect against structural damage but is also related to low BMD.
Collapse
|
21
|
Furue M, Yamamura K, Kido‐Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy 2018; 73:29-36. [PMID: 28670717 DOI: 10.1111/all.13239] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a chronic or chronically relapsing, eczematous, severely pruritic skin disorder associated with skin barrier dysfunction. The lesional skin of AD exhibits T helper 2 (TH 2)-deviated immune reactions. Interleukin-31 (IL-31), preferentially produced from TH 2 cells, is a potent pruritogenic cytokine, and its systemic and local administration induces scratching behavior in rodents, dogs and monkeys. Recent clinical trials have revealed that administration of an anti-IL-31 receptor antibody significantly alleviates pruritus in patients with AD. In this review, we summarize recent topics related to IL-31 and its receptor with special references to atopic itch.
Collapse
Affiliation(s)
- M. Furue
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and clinical center for Yusho and dioxin Kyushu University Hospital Kyushu University Fukuoka Japan
| | - K. Yamamura
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - M. Kido‐Nakahara
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T. Nakahara
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Y. Fukui
- Division of Immunogenetics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
- Research Center for Advanced Immunology Kyushu University Fukuoka Japan
| |
Collapse
|
22
|
Interleukin-31 and thymic stromal lymphopoietin expression in plasma and lymph node from Hodgkin lymphoma patients. Oncotarget 2017; 8:85263-85275. [PMID: 29156718 PMCID: PMC5689608 DOI: 10.18632/oncotarget.19665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hodgkin Lymphoma (HL) is a tumor of B-cell origin characterized by Hodgkin and Reed-Stenberg (H/RS) cells embedded in an inflammatory tissue where numerous cytokines/chemokines contribute to shape the microenvironment, leading to the typical clinical symptoms. We investigated: i) the expression of Interleukin-IL-31 (IL-31) and Thymic Stromal Lymphopoietin (TSLP), two Th2-related cytokines with tumor-promoting and pruritogenic functions, and of the respective receptors in HL invaded lymph nodes by flow cytometry, and ii) the potential association of IL-31/TSLP plasma concentrations with clinical characteristics by ELISA. H/RS cells and the major immune cell types infiltrating HL lymph nodes expressed intracytoplasmic and surface IL-31/TSLP, and their receptors. A subgroup of patients showing at diagnosis elevated IL-31 and TSLP plasma levels had an International Prognostic Score>2, indicative of high risk of relapse, and a subsequent positive interim PET-scan, indicative of insufficient response to chemotherapy. No correlation was found between IL-31/TSLP plasma levels and overall or event-free survival. In conclusion, IL-31/TSLP and their receptors are expressed in HL cells and in immune cells infiltrating affected lymph nodes, where both cytokines may contribute to local immune suppression. The clinical impact of IL-31 and TSLP plasma levels has to be further defined in larger patient cohorts.
Collapse
|
23
|
Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev 2017; 278:246-262. [DOI: 10.1111/imr.12545] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Atsushi Otsuka
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Takashi Nomura
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Pawinee Rerknimitr
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Division of Dermatology; Department of Medicine; Faculty of Medicine, Allergy and Clinical Immunology Research Group; Chulalongkorn University; Bangkok Thailand
| | - Judith A. Seidel
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tetsuya Honda
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Singapore Immunology Network (SIgN) and Institute of Medical Biology; Agency for Science, Technology and Research (A*STAR); Biopolis; Singapore
| |
Collapse
|
24
|
Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm Regen 2017; 37:14. [PMID: 29259713 PMCID: PMC5725646 DOI: 10.1186/s41232-017-0044-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin inflammatory disorder characterized by recurrent eczema accompanied by an intractable itch that leads to an impaired quality of life. Extensive recent studies have shed light on the multifaceted pathogenesis of the disease. The complex interplay among skin barrier deficiency, immunological derangement, and pruritus contributes to the development, progression, and chronicity of the disease. Abnormalities in filaggrin, other stratum corneum constituents, and tight junctions induce and/or promote skin inflammation. This inflammation, in turn, can further deteriorate the barrier function by downregulating a myriad of essential barrier-maintaining molecules. Pruritus in AD, which may be due to hyperinnervation of the epidermis, increases pruritogens, and central sensitization compromises the skin integrity and promotes inflammation. There are unmet needs in the treatment of AD. Based on the detailed evidence available to date, certain disease mechanisms can be chosen as treatment targets. Numerous clinical trials of biological agents are currently being conducted and are expected to provide treatments for patients suffering from AD in the future. This review summarizes the etiopathogenesis of the disease and provides a rationale for choosing the novel targeted therapy that will be available in the future.
Collapse
Affiliation(s)
- Pawinee Rerknimitr
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan
| | - Chisa Nakashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| |
Collapse
|
25
|
Oyama S, Kitamura H, Kuramochi T, Higuchi Y, Matsushita H, Suzuki T, Goto M, Adachi H, Kasutani K, Sakamoto A, Iwayanagi Y, Kaneko A, Nanami M, Fujii E, Esaki K, Takashima Y, Shimaoka S, Hattori K, Kawabe Y. Cynomolgus monkey model of interleukin-31-induced scratching depicts blockade of human interleukin-31 receptor A by a humanized monoclonal antibody. Exp Dermatol 2017; 27:14-21. [DOI: 10.1111/exd.13236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Sohei Oyama
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Hidetomo Kitamura
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Taichi Kuramochi
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Yoshinobu Higuchi
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Hiroaki Matsushita
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Tsukasa Suzuki
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Masaaki Goto
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Hideki Adachi
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Keiko Kasutani
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Akihisa Sakamoto
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Yuki Iwayanagi
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Akihisa Kaneko
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Masahiko Nanami
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Etsuko Fujii
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Keiko Esaki
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Yoshiaki Takashima
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Shin Shimaoka
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Kunihiro Hattori
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| | - Yoshiki Kawabe
- Research Division; Chugai Pharmaceutical Co., Ltd.; Gotemba Shizuoka Japan
| |
Collapse
|
26
|
Heratizadeh A, Werfel T. Anti-inflammatory therapies in atopic dermatitis. Allergy 2016; 71:1666-1675. [PMID: 27735066 DOI: 10.1111/all.13065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Abstract
The pathogenesis of atopic dermatitis (AD) is multifactorial and complex. Consequently, clinical signs and symptoms vary strongly depending on individually relevant trigger factors and the stage of the disease. So far, treatment of AD was commonly limited to topical treatment or, in more severe cases, to systemic drugs mostly approved for other indications than AD. However, emerging data on new anti-inflammatory agents have been published in the recent years. As these new substances specifically focus on immune responses in AD, these are partially considered as possible 'breakthrough' in the treatment of AD. Therapeutic strategies of the future appear to be 'customized' for inflammation in AD as they target pro-inflammatory, highly relevant cytokines and cytokine receptors, such as IL-4Rα, IL-13, IL-31, and IL-17. Further innovative therapeutic approaches aim to block the function of relevant molecules such as thymic stromal lymphopoietin, chemoattractant-receptor homologous molecule expressed on Th2 lymphocytes (CRTh2), and phosphodiesterase (PDE)-4 inhibitors. Recently, anti-inflammatory effects in AD by antagonizing the histamine (H)-4 receptor have also been detected. Finally, specific immunotherapy is under further investigation as treatment option for AD patients with clinically relevant sensitization.
Collapse
Affiliation(s)
- A. Heratizadeh
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| | - T. Werfel
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| |
Collapse
|
27
|
Hermanns HM. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev 2015. [DOI: 10.1016/j.cytogfr.2015.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Wang AX, Xu Landén N. New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life 2015; 67:601-10. [DOI: 10.1002/iub.1405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Ao-xue Wang
- Department of Dermatology; The Second Hospital of Dalian Medical University; Dalian China
| | - Ning Xu Landén
- Unit of Dermatology and Venereology, Department of Medicine; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
29
|
Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out? Clin Rev Allergy Immunol 2015; 51:263-292. [DOI: 10.1007/s12016-015-8488-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Hwang JS, Kim GC, Park E, Kim JE, Chae CS, Hwang W, Lee C, Hwang SM, Wang HS, Jun CD, Rudra D, Im SH. NFAT1 and JunB Cooperatively Regulate IL-31 Gene Expression in CD4+ T Cells in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2015; 194:1963-1974. [PMID: 25595785 DOI: 10.4049/jimmunol.1401862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Abstract
IL-31 is a key mediator of itching in atopic dermatitis (AD) and is preferentially produced by activated CD4+ T cells and Th2 cells. Although pathophysiological functions of IL-31 have been suggested in diverse immune disorders, the molecular events underlying IL-31 gene regulation are still unclear. In this study we identified the transcription start site and functional promoter involved in IL-31 gene regulation in mouse CD4+ T cells. TCR stimulation–dependent IL-31 expression was found to be closely linked with in vivo binding of NFAT1 and JunB to the IL-31 promoter. Although NFAT1 alone enhanced IL-31 promoter activity, it was further enhanced in the presence of JunB. Conversely, knockdown of either NFAT1 or JunB resulted in reduced IL-31 expression. NFAT1-deficient CD4+ T cells showed a significant defect in IL-31 expression compared with wild-type CD4+ T cells. In agreement with these findings, mice subjected to atopic conditions showed much higher levels of IL-31, which were closely correlated with a significant increase in the number of infiltrated NFAT1+CD4+ T cells into the AD ears. Amelioration of AD progression by cyclosporin A treatment was well correlated with downregulation of IL-31 expressions in CD4+ T cells and total ear residual cells. In summary, our results suggest a functional cooperation between NFAT1 and JunB in mediating IL-31 gene expression in CD4+ T cells and indicate that interference with this interaction or their activity has the potential of reducing IL-31–mediated AD symptoms.
Collapse
Affiliation(s)
- Ji Sun Hwang
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
| | - Gi-Cheon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju 500-712 ,
| | - EunBee Park
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
| | - Jung-Eun Kim
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju 500-712 ,
| | - Chang-Suk Chae
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
| | - Won Hwang
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju 500-712 ,
| | - Changhon Lee
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , Pohang 790-784 ,
| | - Sung-Min Hwang
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , Pohang 790-784 ,
| | - Hui Sun Wang
- Department of Neurosurgery, Chosun University College of Medicine , Gwangju 501-717 ,
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju 500-712 ,
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science , Pohang 790-784 ,
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , Pohang 790-784 ,
| |
Collapse
|
31
|
The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma. Leukemia 2014; 29:958-67. [PMID: 25283844 DOI: 10.1038/leu.2014.291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/19/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-31A binds to an heterodimer composed of IL-31 receptor A (IL-31RA) and Oncostatin M Receptor (OSMR). The IL-31/IL-31R complex is involved in the pathogenesis of various skin diseases, including cutaneous T-cell lymphoma. No information is available on the relations between the IL-31/IL-31R complex and B-cell lymphoma. Here we have addressed this issue in follicular lymphoma (FL), a prototypic germinal center(GC)-derived B-cell malignancy. IL-31 enhanced primary FL cell proliferation through IL-31R-driven signal transducer and activator of transcription factor 1/3 (STAT1/3), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation. In contrast, GC B cells did not signal to IL-31 in spite of IL-31R expression. GC B cells expressed predominantly the inhibitory short IL-31RA isoform, whereas FL cells expressed predominantly the long signaling isoform. Moreover, GC B cells lacked expression of other IL-31RA isoforms potentially involved in the signaling pathway. IL-31 protein expression was significantly higher in surface membrane than in cytosol of both FL and GC B cells. IL-31 was detected in plasma membrane microvesicles from both cell types but not released in soluble form in culture supernatants. IL-31 and IL-31RA expression was higher in lymph nodes from FL patients with grade IIIa compared with grade I/II, suggesting a paracrine and/or autocrine role of IL-31/IL-31RA complex in tumor progression through microvesicle shedding.
Collapse
|
32
|
Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim Biophys Acta Mol Basis Dis 2014; 1842:869-92. [DOI: 10.1016/j.bbadis.2014.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
|
33
|
Rabenhorst A, Hartmann K. Interleukin-31: a novel diagnostic marker of allergic diseases. Curr Allergy Asthma Rep 2014; 14:423. [PMID: 24510535 DOI: 10.1007/s11882-014-0423-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interleukin-31 (IL-31) is a newly discovered cytokine associated with chronic skin inflammation and pruritus. Patients with atopic dermatitis, chronic spontaneous urticaria, allergic contact dermatitis, prurigo nodularis, primary cutaneous lymphoma and mastocytosis exhibit increased serum levels of IL-31 protein and elevated IL-31 mRNA in the skin. Interestingly, in some of these diseases, IL-31 serum levels correlate with disease activity. In the present review, we particularly focus on studies investigating IL-31 as a novel diagnostic biomarker indicating the severity of allergic diseases. We highlight a recent study on IL-31 in mastocytosis, which reports on elevated serum levels of IL-31 in adults correlating with the severity of disease categories, tryptase levels and percentage of bone marrow infiltration. We conclude that growing knowledge about IL-31, its receptors and signaling pathways serves to better understand the pathogenesis of allergic diseases and may lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Anja Rabenhorst
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany,
| | | |
Collapse
|