1
|
Apostolovic D, Grundström J, Kiewiet MBG, Perusko M, Hamsten C, Starkhammar M, Paulie S, van Hage M. Th2-skewed T cells correlate with B cell response to α-Gal and tick antigens in α-Gal syndrome. J Clin Invest 2023; 133:158357. [PMID: 36701195 PMCID: PMC10014093 DOI: 10.1172/jci158357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Tick bites have been shown to transmit a novel form of severe food allergy, the galactose-α-1,3-galactose (α-Gal) syndrome (AGS). Cellular responses to α-Gal in patients with AGS have, to date, not been thoroughly scrutinized. Therefore, we investigated T and B cell proliferation, activation, and cytokine profiles in response to tick protein extract (TE) and α-Gal-free TE in patients with AGS and in healthy controls. T and B cells from both patients and controls proliferated in response to TE, but significantly more in patients with AGS. B cell proliferation, but not T cell proliferation, in patients with AGS was reduced by removing α-Gal from the TE. In addition, TE induced a clear Th2 cytokine profile in patients with AGS. Expression of CD23 by B cells correlated only to T cell proliferation. However, both B cell proliferation and CD23 expression were reduced when CD40L and IL-4 were blocked. A large portion of the IgG1 and IgE antibodies binding TE in patients with AGS were directed against the α-Gal epitope. We have, for what we believe to be the first time, investigated T and B cell responses to α-Gal carrying tick proteins in patients with AGS, which will be essential for the understanding of the immune response against an allergenic carbohydrate transmitted by ticks.
Collapse
Affiliation(s)
- Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Jeanette Grundström
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Mensiena B Gea Kiewiet
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Marija Perusko
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden.,Innovative Centre of the Faculty of Chemistry, Belgrade, Serbia
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| | | | | | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Solna, Sweden
| |
Collapse
|
2
|
Freidl R, Garib V, Linhart B, Haberl EM, Mader I, Szépfalusi Z, Schmidthaler K, Douladiris N, Pampura A, Varlamov E, Lepeshkova T, Beltyukov E, Naumova V, Taka S, Nosova D, Guliashko O, Kundi M, Kiyamova A, Katsamaki S, Valenta R. Extensively Hydrolyzed Hypoallergenic Infant Formula with Retained T Cell Reactivity. Nutrients 2022; 15:nu15010111. [PMID: 36615769 PMCID: PMC9824366 DOI: 10.3390/nu15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) can be life-threatening and affects up to 3% of children. Hypoallergenic infant formulas based on hydrolyzed cow's milk protein are increasingly considered for therapy and prevention of cow's milk allergy. The aim of this study was to investigate the allergenic activity and ability to induce T cell and cytokine responses of an infant formula based on extensively hydrolyzed cow's milk protein (whey) (eHF, extensively hydrolyzed formula) supplemented with Galactooligosaccharides (GOS) and Limosilactobacillus fermentum CECT5716 (LF) to determine its suitability for treatment and prevention of CMA. METHODS eHF and standard protein formula based on intact cow's milk proteins (iPF) with or without Galactooligosaccharide (GOS) and Limosilactobacillus fermentum CECT5716 (LF) were investigated with allergen-specific antibodies and tested for IgE reactivity and allergenic activity in basophil degranulation assays with sera from cow's milk (CM)-allergic infants/children. Their ability to stimulate T cell proliferation and cytokine secretion in cultured peripheral blood mononuclear cells (PBMC) from CM-allergic infants and children was studied with a FACS-based carboxyfluorescein diacetate succinimidyl ester (CFSE) dilution assay and xMAP Luminex fluorescent bead-based technology, respectively. RESULTS An eHF supplemented with GOS and LF exhibiting almost no IgE reactivity and allergenic activity was identified. This eHF induced significantly lower inflammatory cytokine secretion as compared to an intact protein-based infant formula but retained T cell reactivity. CONCLUSIONS Due to strongly reduced allergenic activity and induction of inflammatory cytokine secretion but retained T cell reactivity, the identified eHF may be used for treatment and prevention of CMA by induction of specific T cell tolerance.
Collapse
Affiliation(s)
- Raphaela Freidl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Victoria Garib
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Birgit Linhart
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
| | | | - Isabelle Mader
- HiPP GmbH & Co. Vertrieb KG, 85276 Pfaffenhofen, Germany
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergy and Endocrinology, Comprehensive Center of Pediatrics, Medical University Vienna, A-1090 Vienna, Austria
| | - Klara Schmidthaler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergy and Endocrinology, Comprehensive Center of Pediatrics, Medical University Vienna, A-1090 Vienna, Austria
| | - Nikos Douladiris
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexander Pampura
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics Named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Evgeniy Varlamov
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics Named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Tatiana Lepeshkova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620014 Ekaterinburg, Russia
| | - Evgeny Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620014 Ekaterinburg, Russia
| | - Veronika Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620014 Ekaterinburg, Russia
| | - Styliani Taka
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dina Nosova
- Allergy Department, UNIMED Laboratories, 119049 Moscow, Russia
| | - Olga Guliashko
- Allergy Department, UNIMED Laboratories, 119049 Moscow, Russia
| | - Michael Kundi
- Department for Environmental Heath, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | - Alina Kiyamova
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Stefani Katsamaki
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 119049 Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119049 Moscow, Russia
- Karl Landsteiner University for Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +43-1-40400-50420
| |
Collapse
|
3
|
da Silva Antunes R, Sutherland A, Frazier A, Schulten V, Pomés A, Glesner J, Calatroni A, Altman MC, Wood RA, O'Connor GT, Pongracic JA, Khurana Hershey GK, Kercsmar CM, Gruchalla RS, Gill M, Liu AH, Zoratti E, Kattan M, Busse PJ, Bacharier LB, Teach SJ, Wheatley LM, Togias A, Busse WW, Jackson DJ, Sette A. Heterogeneity of magnitude, allergen immunodominance, and cytokine polarization of cockroach allergen-specific T cell responses in allergic sensitized children. Clin Transl Allergy 2021; 11:e12073. [PMID: 34691392 PMCID: PMC8514843 DOI: 10.1002/clt2.12073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/03/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Characterization of allergic responses to cockroach (CR), a common aeroallergen associated with asthma, has focused mainly on IgE reactivity, but little is known about T cell responses, particularly in children. We conducted a functional evaluation of CR allergen-specific T cell reactivity in a cohort of CR allergic children with asthma. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 71 children, with mild-to-moderate asthma who were enrolled in a CR immunotherapy (IT) clinical trial, prior to treatment initiation. PBMC were stimulated with peptide pools derived from 11 CR allergens, and CD4+ T cell responses assessed by intracellular cytokine staining. RESULTS Highly heterogeneous responses in T cell reactivity were observed among participants, both in terms of the magnitude of cytokine response and allergen immunodominance. Reactivity against Bla g 9 and Bla g 5 was most frequent. The phenotype of the T cell response was dominated by IL-4 production and a Th2 polarized profile in 54.9% of participants, but IFNγ production and Th1 polarization was observed in 25.3% of the participants. The numbers of regulatory CD4+ T cells were also highly variable and the magnitude of effector responses and Th2 polarization were positively correlated with serum IgE levels specific to a clinical CR extract. CONCLUSIONS Our results demonstrate that in children with mild-to-moderate asthma, CR-specific T cell responses display a wide range of magnitude, allergen dominance, and polarization. These results will enable examination of whether any of the variables measured are affected by IT and/or are predictive of clinical outcomes.
Collapse
Affiliation(s)
| | - Aaron Sutherland
- Division of Vaccine DiscoveryLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - April Frazier
- Division of Vaccine DiscoveryLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Veronique Schulten
- Division of Vaccine DiscoveryLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Anna Pomés
- Basic ResearchIndoor Biotechnologies, Inc.CharlottesvilleVirginiaUSA
| | - Jill Glesner
- Basic ResearchIndoor Biotechnologies, Inc.CharlottesvilleVirginiaUSA
| | | | - Matthew C. Altman
- Benaroya Research Institute Systems Immunology DivisionDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Robert A. Wood
- Division of Pediatric Allergy, Immunology and RheumatologyDepartment of PediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - George T. O'Connor
- Boston University School of MedicinePulmonary CenterBostonMassachusettsUSA
| | - Jacqueline A. Pongracic
- Advanced General Pediatrics and Primary CareAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | | | - Carolyn M. Kercsmar
- Division of Pulmonary MedicineCincinnati Children's HospitalCincinnatiOhioUSA
| | - Rebecca S. Gruchalla
- Divisions of Infectious Diseases and Pulmonary Vascular BiologyDepartment of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Michelle Gill
- Divisions of Infectious Diseases and Pulmonary Vascular BiologyDepartment of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Andrew H. Liu
- Department of PediatricsChildren's Hospital ColoradoUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Edward Zoratti
- Henry Ford Health System and Wayne State University School of MedicineDetroitMichiganUSA
| | - Meyer Kattan
- College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Paula J. Busse
- Division of Clinical Immunology and AllergyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Leonard B. Bacharier
- Department of PediatricsMonroe Carell Jr Children's Hospital at Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Stephen J. Teach
- Center for Translational ResearchChildren's National HospitalWashingtonDCUSA
| | - Lisa M. Wheatley
- Division of Allergy, Immunology, and TransplantationNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleMarylandUSA
| | - Alkis Togias
- Division of Allergy, Immunology, and TransplantationNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleMarylandUSA
| | - William W. Busse
- Departments of Pediatrics and MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Daniel J. Jackson
- Departments of Pediatrics and MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alessandro Sette
- Division of Vaccine DiscoveryLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Harding BC, Kinealy BP, Franzese CB. Cross-reactivity in Skin Prick Test Results of Members Within Pooideae Subfamily. OTO Open 2021; 5:2473974X20986569. [PMID: 33490855 PMCID: PMC7809529 DOI: 10.1177/2473974x20986569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Molecular similarities of grass pollen antigens have led to the view that cross-reactivity exists within members of the Pooideae subfamily of grasses. This has resulted in testing for only the most antigenically representative member of Pooideae, Timothy grass (Phleum pratense), despite little literature to support the claim that Phleum is the most representative member or that in vitro cross-reactivity correlates with in vivo cross-reactivity. The aim of the study was to determine if patients with allergic rhinitis symptoms and positive skin prick test results to meadow fescue (Festuca pratensis) also have positive results to Timothy grass. STUDY DESIGN Retrospective cross-sectional study. SETTING Tertiary care center in middle Missouri. METHODS A retrospective chart review identified patients ≥12 years old with a diagnosis of allergic rhinitis who underwent skin prick testing between March 2016 and July 2018, by using a search with CPT code 95004 (Current Procedural Terminology). Positive skin prick test results were based on wheal produced ≥3 mm than the negative control. RESULTS After review of 2182 charts, 1587 patients met criteria to test for Phleum and Festuca. In total, 1239 patients had a positive result for Phleum or Festuca. Of these, 479 (38.6%) tested positive for Festuca alone, while 342 (27.6%) and 418 (33.7%) tested positive for Phleum alone and Phleum+Festuca, respectively. CONCLUSION Clinical cross-reactivity among Pooideae members may not be as complete as traditionally thought. P pratense may not be the most antigenically representative subfamily member, and other grasses may need to be included in skin prick testing.
Collapse
Affiliation(s)
- Brette C. Harding
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Brian P. Kinealy
- Department of Otolaryngology–Head and Neck Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Christine B. Franzese
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Huang H, Curin M, Banerjee S, Chen K, Garmatiuk T, Resch‐Marat Y, Carvalho‐Queiroz C, Blatt K, Gafvelin G, Grönlund H, Valent P, Campana R, Focke‐Tejkl M, Valenta R, Vrtala S. A hypoallergenic peptide mix containing T cell epitopes of the clinically relevant house dust mite allergens. Allergy 2019; 74:2461-2478. [PMID: 31228873 PMCID: PMC7078969 DOI: 10.1111/all.13956] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
Background In the house dust mite (HDM) Dermatophagoides pteronyssinus, Der p 1, 2, 5, 7, 21, and 23 have been identified as the most important allergens. The aim of this study was to define hypoallergenic peptides derived from the sequences of the six allergens and to use the peptides and the complete allergens to study antibody, T cell, and cytokine responses in sensitized and nonsensitized subjects. Methods IgE reactivity of HDM‐allergic and non‐HDM‐sensitized individuals to 15 HDM allergens was established using ImmunoCAP ISAC technology. Thirty‐three peptides covering the sequences of the six HDM allergens were synthesized. Allergens and peptides were tested for IgE and IgG reactivity by ELISA and ImmunoCAP, respectively. Allergenic activity was determined by basophil activation. CD4+ T cell and cytokine responses were determined in PBMC cultures by CFSE dilution and Luminex technology, respectively. Results House dust mite allergics showed IgE reactivity only to complete allergens, whereas 31 of the 33 peptides lacked relevant IgE reactivity and allergenic activity. IgG antibodies of HDM‐allergic and nonsensitized subjects were directed against peptide epitopes and higher allergen‐specific IgG levels were found in HDM allergics. PBMC from HDM‐allergics produced higher levels of IL‐5 whereas non‐HDM‐sensitized individuals mounted higher levels of IFN‐gamma, IL‐17, pro‐inflammatory cytokines, and IL‐10. Conclusion IgG antibodies in HDM‐allergic patients recognize peptide epitopes which are different from the epitopes recognized by IgE. This may explain why naturally occurring allergen‐specific IgG antibodies do not protect against IgE‐mediated allergic inflammation. A mix of hypoallergenic peptides containing T cell epitopes of the most important HDM allergens was identified.
Collapse
Affiliation(s)
- Huey‐Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Srinita Banerjee
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Kuan‐Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tetiana Garmatiuk
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Yvonne Resch‐Marat
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Claudia Carvalho‐Queiroz
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Katharina Blatt
- Division of Hematology&Hemostaseology, Department of Internal Medicine I Medical University of Vienna Vienna Austria
| | - Guro Gafvelin
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Peter Valent
- Division of Hematology&Hemostaseology, Department of Internal Medicine I Medical University of Vienna Vienna Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Department of Clinical Immunology and Allergy, Laboratory for Immunopathology Sechenov First Moscow State Medical University Moscow Russia
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
6
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
7
|
Ma N, Fang Y, Xu R, Zhai B, Hou C, Wang X, Jiang Z, Wang L, Liu Q, Han G, Wang R. Ebi3 promotes T- and B-cell division and differentiation via STAT3. Mol Immunol 2019; 107:61-70. [PMID: 30660991 DOI: 10.1016/j.molimm.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
Although sharing the same subunit Ebi3, IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3) have different biological functions, suggesting that Ebi3 subunit may functions as a carrier. Our data demonstrated that activated T cells and B cells effectively up-regulated Ebi3 expression. In addition, Ebi3 effectively promoted T-cell activation and the differentiation of helper T 1 (Th1), Th17, and Foxp3+ regulatory T (Treg) cells induced by Th1, Th17, and Treg polarizing condition, respectively. Naturally, Ebi3 could promote B-cell activation and the production of CD138+ plasma cells (PC) induced by LPS. Conversely, neutralizing anti-Ebi3 antibody could significantly suppress T/B-cell activation and production of Th1, Th17, Tregs, and PC induced by Th1, Th17, Treg polarizing condition, and LPS, respectively. Furthermore, we found that Ebi3 time-dependently induced STAT3 activation in CD4+T cells and B cells. Conversely, STAT3-/- effectively reduced Ebi3 expression and the production of Th1, Th17, Tregs, and plasma cells. Finally, we showed that gp130 but not IL-27Rα mediates Ebi3-induced STAT3 activation. These results suggest that Ebi3 promotes Th- and B-cell differentiation via gp130-STAT3 signaling pathway. Thus, autocrine Ebi3 may play an important role in the differentiation of Th and B cells and thus in infection, inflammation, and autoimmune disorders.
Collapse
Affiliation(s)
- Ning Ma
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Ying Fang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China; Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruonan Xu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Bing Zhai
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China; Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing 100176, China
| | - Zhenyu Jiang
- Department of Rheumatology, First hospital of Jilin University, Changchun 130021, China
| | - Liang Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
8
|
Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, Linhart B, Campana R, Focke-Tejkl M, Curin M, Eckl-Dorna J, Lupinek C, Resch-Marat Y, Vrtala S, Mittermann I, Garib V, Khaitov M, Valent P, Pickl WF. Molecular Aspects of Allergens and Allergy. Adv Immunol 2018; 138:195-256. [PMID: 29731005 DOI: 10.1016/bs.ai.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immune disorder. More than 30% of the population suffer from symptoms of allergy which are often severe, disabling, and life threatening such as asthma and anaphylaxis. Population-based birth cohort studies show that up to 60% of the world population exhibit IgE sensitization to allergens, of which most are protein antigens. Thirty years ago the first allergen-encoding cDNAs have been isolated. In the meantime, the structures of most of the allergens relevant for disease in humans have been solved. Here we provide an update regarding what has been learned through the use of defined allergen molecules (i.e., molecular allergology) and about mechanisms of allergic disease in humans. We focus on new insights gained regarding the process of sensitization to allergens, allergen-specific secondary immune responses, and mechanisms underlying allergic inflammation and discuss open questions. We then show how molecular forms of diagnosis and specific immunotherapy are currently revolutionizing diagnosis and treatment of allergic patients and how allergen-specific approaches may be used for the preventive eradication of allergy.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; International Network of Universities for Molecular Allergology and Immunology, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Eckl‐Dorna J, Campana R, Valenta R, Niederberger V. Poor association of allergen-specific antibody, T- and B-cell responses revealed with recombinant allergens and a CFSE dilution-based assay. Allergy 2015; 70:1222-9. [PMID: 26043182 PMCID: PMC4949646 DOI: 10.1111/all.12661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The adaptive immunity underlying allergy comprises two components, the allergen-specific antibody (i.e. IgE, IgG) and the T-cell response. These two components are responsible for different disease manifestations and can be targeted by different therapeutic approaches. Here, we investigated the association of allergen-specific antibody and T- as well as B-cell responses in pollen-allergic patients using recombinant (r) major birch pollen allergen rBet v 1 and major timothy grass pollen allergen rPhl p 5 as defined antigens. METHODS Allergen-specific IgE and IgG antibody responses were determined by ELISA, and allergen-specific T- and B-cell responses were measured in peripheral blood mononuclear cells using a carboxyfluorescein-diacetate-succinimidylester (CFSE) dilution assay. RESULTS CFSE staining in combination with T-cell- and B-cell-specific gating allowed discriminating between allergen-specific T-cell and B-cell responses. Interestingly, we identified patients where mainly T cells and others where mainly B cells proliferated in response to allergen stimulation. No association between the level of allergen-specific Ig responses and B- or T-cell proliferation was observed. CONCLUSION Purified recombinant allergens in conjunction with CFSE staining allow the dissection of allergen-specific B- and T-cell responses. The dissociation of allergen-specific antibody, and B- and T-cell responses may explain the occurrence of selective IgE- and T-cell-mediated manifestations of allergic inflammation and may be important for the development of diagnostic and therapeutic strategies selectively targeting B cells and T cells.
Collapse
Affiliation(s)
- J. Eckl‐Dorna
- Department of Otorhinolaryngology Medical University of Vienna Vienna Austria
| | - R. Campana
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - R. Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - V. Niederberger
- Department of Otorhinolaryngology Medical University of Vienna Vienna Austria
| |
Collapse
|