1
|
Jamali MC, Mohamed AH, Jamal A, Kamal MA, Al Abdulmonem W, Saeed BA, Mansuri N, Ahmad F, Mudhafar M, Shafie A, Hattiwale HM. Biological mechanisms and therapeutic prospects of interleukin-33 in pathogenesis and treatment of allergic disease. J Inflamm (Lond) 2025; 22:17. [PMID: 40355878 PMCID: PMC12070619 DOI: 10.1186/s12950-025-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/15/2025] [Indexed: 05/15/2025] Open
Abstract
Allergic diseases significantly impact the quality of life of people around the world. Cytokines play a crucial role in regulating the immune system. Due to their importance in pro-inflammatory mechanisms, cytokines are used to understand pathogenesis and serve as biomarkers in many diseases. One such cytokine is interleukin-33, a member of the IL-1 family, including IL- 1α, IL-1β, and IL-18. The IL-33 receptor is a heterodimer of IL-1 receptor-like 1 and IL-1 receptor accessory protein. IL-33 plays a critical role in regulating innate and adaptive immune responses. The primary targets of IL-33 in vivo are tissue-resident immune cells, including mast cells, group 2 innate lymphoid cells, regulatory T cells, T helper 2 cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils, and macrophages. However, IL-33 appears to act as an alarm signal that is promptly released by producing cells under cellular damage or stress conditions. IL-33 regulates signaling and various biological functions, including induction of pro-inflammatory cytokines, regulation of cell proliferation, and involvement in tissue remodeling. IL-33 is fundamental in immune-related diseases and plays a critical role in the control of inflammation. Recently, IL-33 has been shown to significantly impact allergic diseases, primarily by inducing Th2 immune responses. IL-33 is a key regulator of mast cell function and a promising therapeutic target for treating allergic diseases. This review provides an overview of the current understanding of the role of IL-33 in allergy pathogenesis and potential clinical approaches.
Collapse
Affiliation(s)
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Al-Majmaah 11952,, Saudi Arabia
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952 , Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Nasrin Mansuri
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713 , Saudi Arabia
| | - Mustafa Mudhafar
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, 56001, Karbala, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff university college, 56001, Kerbala, Iraq
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952 , Saudi Arabia.
| |
Collapse
|
2
|
Wang M, Fu L, Wang H, Tian L. Hotspots and Trends in Allergic Rhinitis Nasal Mucosa Studies: A Bibliometric Analysis (2010-2024). J Asthma Allergy 2025; 18:417-435. [PMID: 40115252 PMCID: PMC11922781 DOI: 10.2147/jaa.s503477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/03/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose This study aims to conduct a bibliometric and visual analysis of the research on the nasal mucosa in allergic rhinitis (AR) and to explore its emerging trends, hotspots, and future development. Methods We comprehensively searched the Web of Science Core Collection (WoSCC) for literature related to the nasal mucosa in AR published between 2010 and 2024. Bibliometric and visual analyses were performed using CiteSpace, VOSviewer, and the R language. Results A total of 1124 relevant articles were included in this study, and the analysis showed that the number of articles in this field has been increasing year by year. China dominated the article output, followed by South Korea and Japan. American Journal of Rhinology & Allergy (69 articles) topped the list of publications; keyword analysis showed that "immune response", "inflammatory response", "autophagy", "NLRP3 inflammasome", and "miRNAs" are hotspots in this field. Conclusion Over the past decade, research related to the nasal mucosa in AR have gained growing interest. This study is the first to use visualization software and data mining information to conduct a bibliometric analysis in this particular field, thereby providing fresh perspectives on the research terrain.
Collapse
Affiliation(s)
- Meiya Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Linyou Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Huan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Li Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
4
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Bousquet J, Grattan CE, Akdis CA, Eigenmann PA, Hoffmann-Sommergruber K, Agache I, Jutel M. Highlights and recent developments in allergic diseases in EAACI journals (2019). Clin Transl Allergy 2020; 10:56. [PMID: 33292572 PMCID: PMC7712618 DOI: 10.1186/s13601-020-00366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) owns three journals: Allergy, Pediatric Allergy and Immunology and Clinical and Translational Allergy. One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. There was substantial progress in 2019 in the identification of basic mechanisms of allergic and respiratory disease and the translation of these mechanisms into clinics. Better understanding of molecular and cellular mechanisms, efforts for the development of biomarkers for disease prediction, novel prevention and intervention studies, elucidation of mechanisms of multimorbidities, entrance of new drugs in the clinics as well as recently completed phase three clinical studies and publication of a large number of allergen immunotherapy studies and meta-analyses have been the highlights of the last year.
Collapse
Affiliation(s)
- J Bousquet
- MACVIA-France, Montpellier, France. .,CHRU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France.
| | - C E Grattan
- St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - P A Eigenmann
- Pediatric Allergy Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Hoffmann-Sommergruber
- Depart of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - I Agache
- Transylvania University Brasov, Brasov, Romania
| | - M Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland.,ALL-MED Medical Research Institute, Wrocław, Poland
| |
Collapse
|
6
|
Boccabella C. Generation of functional lungs with pluripotent stem cells. Allergy 2020; 75:3297-3298. [PMID: 32623729 DOI: 10.1111/all.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Fondazione Policlinico Universitario “A Gemelli” ‐ IRCCS University of the Sacred Heart Rome Italy
| |
Collapse
|
7
|
Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy 2020; 75:3069-3076. [PMID: 32901931 DOI: 10.1111/all.14586] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR) is an upper airway disease with high prevalence in the world, and therefore needs to be thoroughly investigated and treated accordingly. Although the mechanisms underlying the pathology and treatment of AR have been widely studied, many aspects of AR are still unclear and warrant further investigations. The purpose of the present review was therefore to report recently published papers, which highlight the novel mechanisms and treatments of AR. These include role of environment, important proteins and cells, and some other factors in the pathogenesis of AR; as well as the role of immunotherapy and biologics in the treatment of AR.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
8
|
Hong H, Liao S, Chen F, Yang Q, Wang D. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020; 75:2794-2804. [PMID: 32737888 DOI: 10.1111/all.14526] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Under the concept of "united airway diseases," the airway is a single organ wherein upper and lower airway diseases are commonly comorbid. The upper and lower airways are lined with respiratory epithelium that plays a vital role in immune surveillance and modulation as the first line of defense to various infective pathogens, allergens, and physical insults. Recently, there is a common hypothesis emphasizing epithelium-derived cytokines, namely IL-25, IL-33, and TSLP, as key regulatory factors that link in immune-pathogenic mechanisms of allergic rhinitis (AR), chronic rhinosinusitis (CRS), and asthma, mainly involving in type 2 inflammatory responses and linking innate and adaptive immunities. Herein, we review studies that elucidated the role of epithelium-derived triple cytokines in both upper and lower airways with the purpose of expediting better clinical treatments and managements of AR, CRS, asthma, and other associated allergic diseases via applications of the modulators of these cytokines.
Collapse
Affiliation(s)
- Haiyu Hong
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| | - Shumin Liao
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
| | - Fenghong Chen
- Otorhinolaryngology Hospital The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Qintai Yang
- Department of Otolaryngology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - De‐Yun Wang
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| |
Collapse
|
9
|
Sugita K, Soyka MB, Wawrzyniak P, Rinaldi AO, Mitamura Y, Akdis M, Akdis CA. Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions. Ann Allergy Asthma Immunol 2020; 125:517-527. [PMID: 32454094 DOI: 10.1016/j.anai.2020.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Our understanding of the origin of allergic diseases has increased in recent years, highlighting the importance of microbial dysbiosis and epithelial barrier dysfunction in affected tissues. Exploring the microbial-epithelial-immune crosstalk underlying the mechanisms of allergic diseases will allow the development of novel prevention and treatment strategies for allergic diseases. DATA SOURCES This review summarizes the recent advances in microbial, epithelial, and immune interactions in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma. STUDY SELECTIONS We performed a literature search, identifying relevant recent primary articles and review articles. RESULTS Dynamic crosstalk between the environmental factors and microbial, epithelial, and immune cells in the development of atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma underlies the pathogenesis of these diseases. There is substantial evidence in the literature suggesting that environmental factors directly affect barrier function of the epithelium. In addition, T-helper 2 (TH2) cells, type 2 innate lymphoid cells, and their cytokine interleukin 13 (IL-13) damage skin and lung barriers. The effects of environmental factors may at least in part be mediated by epigenetic mechanisms. Histone deacetylase activation by type 2 immune response has a major effect on leaky barriers and blocking of histone deacetylase activity corrects the defective barrier in human air-liquid interface cultures and mouse models of allergic asthma with rhinitis. We also present and discuss a novel device to detect and monitor skin barrier dysfunction, which provides an opportunity to rapidly and robustly assess disease severity. CONCLUSION A complex interplay between environmental factors, epithelium, and the immune system is involved in the development of systemic allergic diseases.
Collapse
Affiliation(s)
- Kazunari Sugita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Michael B Soyka
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Otorhinolaryngology, Head and Neck Surgery, University and University Hospital of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|