1
|
Eggel A, Jardetzky TS. Structural and Functional Insights Into IgE Receptor Interactions and Disruptive Inhibition. Immunol Rev 2025; 331:e70031. [PMID: 40305523 DOI: 10.1111/imr.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Immunoglobulin E (IgE) plays a critical role in host defense against parasites and venoms but is also best known for its central involvement in allergic reactions. Through interactions with its high- and low-affinity receptors, FcεRI and CD23, respectively, IgE sensitizes mast cells and basophils, drives antigen presentation, regulates antibody production, and overall amplifies type 2 immunity. The unique conformational flexibility of IgE, particularly within its Cε2-Cε4 domains of the Fc-region, has emerged as a key determinant of receptor specificity and function. Structural studies have revealed that IgE adopts distinct open and closed conformations that selectively enable FcεRI or CD23 binding. These insights have reshaped our understanding of receptor engagement and laid the foundation for therapeutic targeting approaches of IgE:receptor interactions to treat allergies. Initial anti-IgE biologics, such as omalizumab, were developed to neutralize free IgE in circulation and prevent receptor binding. While clinically successful, this approach has limitations, such as the inefficient targeting of receptor-bound IgE and the requirement for prolonged and frequent injections to achieve therapeutic benefit. Recent advances have led to the development of a new class of anti-IgE molecules termed "disruptive" IgE inhibitors that actively disassemble preformed IgE:FcεRI complexes. By exploiting conformational dynamics, creating steric interference, or allosteric mechanisms, these molecules, in addition to their neutralizing capacity, enable rapid active desensitization of allergic effector cells. In this review, we highlight how an improved structural and mechanistic understanding of IgE and its receptors has guided the design of such next-generation anti-IgE molecules. Such multifunctional biologics might offer faster onset, broader activity, and potential use in acute allergic situations, setting the stage for a new era in IgE-targeted therapy.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Hirano T, Koyanagi A, Ago H, Yamamoto M, Kitaura J, Kasai M, Okumura K. Allosteric inhibition of IgE-FcεRI interactions by simultaneous targeting of IgE F(ab')2 epitopes. Commun Biol 2024; 7:1042. [PMID: 39179708 PMCID: PMC11343869 DOI: 10.1038/s42003-024-06633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Immunoglobulin E (IgE) plays pivotal roles in allergic diseases through interaction with a high-affinity receptor (FcεRI). We established that Fab fragments of anti-IgE antibodies (HMK-12 Fab) rapidly dissociate preformed IgE-FcεRI complexes in a temperature-dependent manner and inhibit IgE-mediated anaphylactic reactions, even after allergen challenge. X-ray crystallographic studies revealed that HMK-12 Fab interacts with each of two equivalent epitopes on the Cε2 homodimer domain involved in IgE F(ab')2. Consequently, HMK-12 Fab-mediated targeting of Cε2 reduced the binding affinity of Fc domains and resulted in rapid removal of IgE from the receptor complex. This unexpected finding of allosteric inhibition of IgE-FcεRI interactions by simultaneous targeting of two epitope sites on the Cε2 homodimer domain of IgE F(ab')2 may have implications for the development of novel therapies for allergic disease.
Collapse
Affiliation(s)
- Takao Hirano
- Department of Hematology, Juntendo University Nerima Hospital, Nerima-ku, Tokyo, Japan.
| | - Akemi Koyanagi
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hideo Ago
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Jiro Kitaura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masataka Kasai
- Atopy Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Barshow SM, Islam M, Commins S, Macauley MS, Paulson JC, Kulis MD. Targeting inhibitory Siglec-3 to suppress IgE-mediated human basophil degranulation. J Allergy Clin Immunol 2024; 154:492-497.e1. [PMID: 38593870 DOI: 10.1016/j.jaci.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin-3 (Siglec-3 [CD33]) is a major Siglec expressed on human mast cells and basophils; engagement of CD33 leads to inhibition of cellular signaling via immunoreceptor tyrosine-based inhibitory motifs. OBJECTIVE We sought to inhibit human basophil degranulation by simultaneously recruiting inhibitory CD33 to the IgE-FcεRI complex by using monoclonal anti-IgE directly conjugated to CD33 ligand (CD33L). METHODS Direct and indirect basophil activation tests (BATs) were used to assess both antigen-specific (peanut) and antigen-nonspecific (polyclonal anti-IgE) stimulation. Whole blood from donors with allergy was used for direct BAT, whereas blood from donors with nonfood allergy was passively sensitized with plasma from donors with peanut allergy in the indirect BAT. Blood was incubated with anti-IgE-CD33L or controls for 1 hour or overnight and then stimulated with peanut, polyclonal anti-IgE, or N-formylmethionyl-leucyl-phenylalanine for 30 minutes. Degranulation was determined by measuring CD63 expression on the basophil surface by flow cytometry. RESULTS Incubation for 1 hour with anti-IgE-CD33L significantly reduced basophil degranulation after both allergen-induced (peanut) and polyclonal anti-IgE stimulation, with further suppression after overnight incubation with anti-IgE-CD33L. As expected, anti-IgE-CD33L did not block basophil degranulation due to N-formylmethionyl-leucyl-phenylalanine, providing evidence that this inhibition is IgE pathway-specific. Finally, CD33L is necessary for this suppression, as monoclonal anti-IgE without CD33L was unable to reduce basophil degranulation. CONCLUSIONS Pretreating human basophils with anti-IgE-CD33L significantly suppressed basophil degranulation through the IgE-FcεRI complex. The ability to abrogate IgE-mediated basophil degranulation is of particular interest, as treatment with anti-IgE-CD33L before antigen exposure could have broad implications for the treatment of food, drug, and environmental allergies.
Collapse
Affiliation(s)
- Suzanne M Barshow
- Duke University School of Medicine, Durham, NC; University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Scott Commins
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Michael D Kulis
- University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
4
|
Guo D, De Sciscio ML, Chi-Fung Ng J, Fraternali F. Modelling the assembly and flexibility of antibody structures. Curr Opin Struct Biol 2024; 84:102757. [PMID: 38118364 DOI: 10.1016/j.sbi.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
Antibodies are large protein assemblies capable of both specifically recognising antigens and engaging with other proteins and receptors to coordinate immune action. Traditionally, structural studies have been dedicated to antibody variable regions, but efforts to determine and model full-length antibody structures are emerging. Here we review the current knowledge on modelling the structures of antibody assemblies, focusing on their conformational flexibility and the challenge this poses to obtaining and evaluating structural models. Integrative modelling approaches, combining experiments (cryo-electron microscopy, mass spectrometry, etc.) and computational methods (molecular dynamics simulations, deep-learning based approaches, etc.), hold the promise to map the complex conformational landscape of full-length antibody structures.
Collapse
Affiliation(s)
- Dongjun Guo
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Maria Laura De Sciscio
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom; Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome, 00185, Italy
| | - Joseph Chi-Fung Ng
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Yang BC. Biologics to treat anaphylaxis. Curr Opin Allergy Clin Immunol 2023; 23:370-375. [PMID: 37527059 DOI: 10.1097/aci.0000000000000940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to review the latest use of biologics in the management of anaphylaxis. The methodology was to highlight both the nonbiologic management of anaphylaxis and the biologic management and how they can be used in conjunction with each other. RECENT FINDINGS As the phenotypes and endotypes of anaphylaxis are better portrayed, it furthers our understanding of the mechanisms of anaphylaxis. New applications of existing biologics to the prevention of anaphylaxis are described. SUMMARY Anaphylaxis is a potentially life-threatening acute hypersensitivity reaction affecting up to 16.8% of the U.S. population. Acute management entails swift identification, removal of the causative agent, and the prevention of cardiovascular collapse, firstly with epinephrine. Adjunctive treatments such as antihistamines work to prevent anaphylaxis from recurring. Biologic management of anaphylaxis involves the use of large-molecule drugs such as monoclonal antibodies. Omalizumab, an IgG1 monoclonal antibody targeting unbound IgE, is the most prevalent and widely studied biologic in the prevention of anaphylaxis. Other monoclonal antibodies in development or approved for other indications, such as ligelizumab, quilizumab, MEDI4212, and dupilumab, may also have potential for preventing anaphylaxis through various mechanisms.
Collapse
|
6
|
McDonnell JM, Dhaliwal B, Sutton BJ, Gould HJ. IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annu Rev Immunol 2023; 41:255-275. [PMID: 36737596 DOI: 10.1146/annurev-immunol-061020-053712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.
Collapse
Affiliation(s)
- J M McDonnell
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | | | - B J Sutton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | - H J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| |
Collapse
|
7
|
Schneider L, Rabe KS, Domínguez CM, Niemeyer CM. Hapten-Decorated DNA Nanostructures Decipher the Antigen-Mediated Spatial Organization of Antibodies Involved in Mast Cell Activation. ACS NANO 2023; 17:6719-6730. [PMID: 36990450 PMCID: PMC10100567 DOI: 10.1021/acsnano.2c12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.
Collapse
|
8
|
Pedersen DV, Lorentzen J, Andersen GR. Structural studies offer a framework for understanding the role of properdin in the alternative pathway and beyond. Immunol Rev 2023; 313:46-59. [PMID: 36097870 PMCID: PMC10087229 DOI: 10.1111/imr.13129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.
Collapse
Affiliation(s)
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to review the latest advancements with biologics in rapid drug desensitization. Our methodology was to highlight both desensitization to biologics themselves and the use of biologics in desensitization to both biologic and nonbiologic drugs. RECENT FINDINGS Biologics are a vast category of drugs that include monoclonal antibodies, nanobodies, modern vaccinations, and even hormones. Desensitization to biologics can be safely performed through standardized procedure. Biomarkers are used both in vitro and in vivo to help identify and classify hypersensitivity reactions. Hypersensitivity reactions to the mRNA vaccinations against SARS-CoV-2 present their own unique challenges to management. There are specific excipients in monoclonal antibodies that are thought to be responsible for many of their hypersensitivity reactions. Certain biologics can even be used to assist in desensitization to other drugs. Rapid drug desensitization is a standardized procedure that may be able to help many patients who have experienced hypersensitivity reactions to biologics and would best be treated with them to continue to receive them. Biologic drugs have opened a new era in medicine for the prevention and treatment of infectious diseases, cancer, and inflammatory diseases. Hypersensitivity reactions to biologics are quite common. This literature review presents the latest advancements in our understanding of hypersensitivity reactions to biologics, how rapid drug desensitization can be used to continue therapy despite history of hypersensitivity, and how biologics themselves can be used to aid in desensitization itself.
Collapse
Affiliation(s)
- Barbara C Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Room 5002-B, Boston, MA, 02115, USA.
- Ribon Therapeutics, 35 Cambridgepark Drive Suite 300, Cambridge, MA, 02140, USA.
| | - Mariana C Castells
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Room 5002-B, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Shu J, Cui X, Liu X, Yu W, Zhang W, Huo X, Lu C. Licochalcone A inhibits IgE-mediated allergic reaction through PLC/ERK/STAT3 pathway. Int J Immunopathol Pharmacol 2022; 36:3946320221135462. [PMID: 36263976 PMCID: PMC9597022 DOI: 10.1177/03946320221135462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Licochalcone (LicA) is a flavonoid commonly derived from the licorice plant that is reported to have a variety of pharmacological activities. However, few studies have focused on its anti-allergic properties. IgE-mediated passive and systemic anaphylaxis mice models were used to assess the in vivo anti-allergic effect of LicA and its underlying mechanism, while degranulation, cytokines, and chemokines released from laboratory of allergic disease (LAD2) cells were used to assess its in vitro anti-allergic effect. We used western blot analysis to explore the downstream signaling pathway of its anti-allergic effect. We found that in the mouse model, LicA attenuated IgE-mediated paw inflammation, recovered the allergy-induced drop in body temperature, and reduced the concentrations of tumor necrosis factor-alpha and monocyte chemo-attractant protein-1 in mouse serum in a dose-dependent manner. LicA inhibited the allergic reaction via inhibition of IgE-mediated LAD2 cell activation through the PLC/ERK/STAT3 pathway.
Collapse
Affiliation(s)
- Jin Shu
- Department of Gynecology, Xi’an Hospital of Traditional Chinese
Medicine, Xi’an, P. R. China
| | - Xu Cui
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China,Shaanxi University of Traditional
Chinese Medicine, Xi’an, P. R. China
| | - Xin Liu
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Wenxing Yu
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Weisong Zhang
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Xiaojing Huo
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Chao Lu
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China,Chao Lu, Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road,
Nanshaomen, Xi’an 710054, China.
| |
Collapse
|
11
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
12
|
Shi L, Liu C, Xiong H, Shi D. Elevation of IgE in patients with psoriasis: Is it a paradoxical phenomenon? Front Med (Lausanne) 2022; 9:1007892. [PMID: 36314037 PMCID: PMC9606585 DOI: 10.3389/fmed.2022.1007892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin E (IgE) elevation is a hallmark of allergic conditions such as atopic dermatitis (AD). The pathogenesis of AD is typically associated with high levels of IL-4 and IL-13 produced by activated T helper 2 (Th2) cells. Psoriasis, on the other hand, is an inflammatory skin disease mainly driven by Th17 cells and their related cytokines. Although the immunopathologic reactions and clinical manifestations are often easily distinguished in the two skin conditions, patients with psoriasis may sometimes exhibit AD-like manifestations, such as elevated IgE and persistent pruritic lesions. Given the fact that the effective T cells have great plasticity to re-differentiate in response to innate and environmental factors, this unusual skin condition could be a consequence of a cross-reaction between distinct arms of T-cell and humoral immunity. Here we review the literature concerning the roles of IgE in the development of AD and psoriasis, showing that elevated IgE seems to be an important indicator for this non-typical psoriasis.
Collapse
Affiliation(s)
- Leyao Shi
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China,The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Huabao Xiong
- Basic Medical School, Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China,Huabao Xiong
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China,Department of Dermatology, Jining No.1 People's Hospital, Jining, China,*Correspondence: Dongmei Shi
| |
Collapse
|
13
|
Kuo BS, Li CH, Chen JB, Shiung YY, Chu CY, Lee CH, Liu YJ, Kuo JH, Hsu C, Su HW, Li YF, Lai A, Ho YF, Cheng YN, Huang HX, Lung MC, Wu MS, Yang FH, Lin CH, Tseng W, Yang J, Lin CY, Tsai PH, Chang HK, Wang YJ, Chen T, Lynn S, Liao MJ, Wang CY. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J Clin Invest 2022; 132:157765. [PMID: 35912861 PMCID: PMC9337824 DOI: 10.1172/jci157765] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Over the last 2 decades, omalizumab is the only anti-IgE antibody that has been approved for asthma and chronic spontaneous urticaria (CSU). Ligelizumab, a higher-affinity anti-IgE mAb and the only rival viable candidate in late-stage clinical trials, showed anti-CSU efficacy superior to that of omalizumab in phase IIb but not in phase III. This report features the antigenic-functional characteristics of UB-221, an anti-IgE mAb of a newer class that is distinct from omalizumab and ligelizumab. UB-221, in free form, bound abundantly to CD23-occupied IgE and, in oligomeric mAb-IgE complex forms, freely engaged CD23, while ligelizumab reacted limitedly and omalizumab stayed inert toward CD23; these observations are consistent with UB-221 outperforming ligelizumab and omalizumab in CD23-mediated downregulation of IgE production. UB-221 bound IgE with a strong affinity to prevent FcԑRI-mediated basophil activation and degranulation, exhibiting superior IgE-neutralizing activity to that of omalizumab. UB-221 and ligelizumab bound cellular IgE and effectively neutralized IgE in sera of patients with atopic dermatitis with equal strength, while omalizumab lagged behind. A single UB-221 dose administered to cynomolgus macaques and human IgE (ε, κ)-knockin mice could induce rapid, pronounced serum-IgE reduction. A single UB-221 dose administered to patients with CSU in a first-in-human trial exhibited durable disease symptom relief in parallel with a rapid reduction in serum free-IgE level.
Collapse
Affiliation(s)
- Be-Sheng Kuo
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| | | | | | | | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | - Cindy Hsu
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | - Annie Lai
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chang Yi Wang
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| |
Collapse
|
14
|
García-Ramírez B, Mares-Mejía I, Rodríguez-Hernández A, Cano-Sánchez P, Torres-Larios A, Ortega E, Rodríguez-Romero A. A native IgE in complex with profilin provides insights into allergen recognition and cross-reactivity. Commun Biol 2022; 5:748. [PMID: 35902770 PMCID: PMC9334453 DOI: 10.1038/s42003-022-03718-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022] Open
Abstract
Allergies have become a rising health problem, where plentiful substances can trigger IgE-mediated allergies in humans. While profilins are considered minor allergens, these ubiquitous proteins are primary molecules involved in cross-reactivity and pollen-food allergy syndrome. Here we report the first crystal structures of murine Fab/IgE, with its chains naturally paired, in complex with the allergen profilin from Hevea brasiliensis (Hev b 8). The crystallographic models revealed that the IgE's six complementarity-determining regions (CDRs) interact with the allergen, comprising a rigid paratope-epitope surface of 926 Å2, which includes an extensive network of interactions. Interestingly, we also observed previously unreported flexibility at Fab/IgE's elbow angle, which did not influence the shape of the paratope. The Fab/IgE exhibits a high affinity for Hev b 8, even when using 1 M NaCl in BLI experiments. Finally, based on the encouraging cross-reactivity assays using two mutants of the maize profilin (Zea m 12), this antibody could be a promising tool in IgE engineering for diagnosis and research applications.
Collapse
Affiliation(s)
- Benjamín García-Ramírez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Israel Mares-Mejía
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Annia Rodríguez-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
15
|
Current and Future Approaches in Management of Chronic Spontaneous Urticaria Using Anti-IgE Antibodies. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060816. [PMID: 35744079 PMCID: PMC9227249 DOI: 10.3390/medicina58060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Chronic spontaneous urticaria (CSU) considerably alters patients’ quality of life, often for extended periods, due to pruriginous skin lesions, impaired sleep, unexpected development of angioedema, and failure of conventional treatments in properly controlling signs and symptoms. Recent research focused on the development of new therapeutic agents with higher efficacy. Although the production of specific immunoglobulin E (IgE) antibodies against certain allergens is not a characteristic of the disease, treatment with omalizumab, a monoclonal anti-IgE antibody, proved efficient and safe in patients with moderate to severe chronic spontaneous urticaria uncontrolled by H1-antihistamines. Ligelizumab, a high-affinity monoclonal anti-IgE antibody, may also efficiently relieve symptoms of unresponsive chronic urticaria to standard therapies. This comprehensive review aims to present recently acquired knowledge on managing chronic spontaneous urticaria with new anti-IgE antibodies. We conducted extensive research on the main databases (PubMed, Google Scholar, and Web of Science) with no restrictions on the years covered, using the search terms “anti-IgE antibodies”, “omalizumab”, “ligelizumab”, and “chronic spontaneous urticaria”. The inclusion criteria were English written articles, and the exclusion criteria were animal-related studies. ClinicalTrials.gov was also reviewed for recent relevant clinical trials related to CSU treatment. CSU is a challenging disease with a significant effect on patients’ quality of life. Current therapies often fail to control signs and symptoms, and additional treatment is needed. New biologic therapies against IgE antibodies and FcεRIα receptors are currently under investigation in advanced clinical trials. We reviewed recently published data on CSU management using these novel treatments. The development of new and improved treatments for CSU will lead to a more personalized therapeutical approach for patients and provide guidance for physicians in better understanding disease mechanisms. However, some agents are still in clinical trials, and more research is needed to establish the safety and efficacy of these treatments.
Collapse
|
16
|
Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation 2022; 19:55. [PMID: 35197064 PMCID: PMC8867756 DOI: 10.1186/s12974-022-02417-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Classical understanding of allergic conjunctivitis (ACJ) suggests that ocular itch results from a mast cell-dependent inflammatory process. However, treatments that target inflammatory mediators or immune cells are often unsatisfying in relieving the stubborn itch symptom. This suggests that additional mechanisms are responsible for ocular itch in ACJ. In this study, we aim to determine the role of neuronal FcεRIa in allergic ocular itch. Methods Calcium imaging was applied to observe the effect of IgE-immune complex in trigeminal neurons. Genomic FcεRIa knockout mice and adeno-associated virus (AAV) mediated sensory neuron FcεRIa knockdown mice were used in conjunction with behavioral tests to determine ocular itch. In addition, immunohistochemistry, Western blot and quantitative RT-PCR were used for in vitro experiments. Results We found that FcεRIα was expressed in a subpopulation of conjunctiva sensory neurons. IgE-IC directly activated trigeminal neurons and evoked acute ocular itch without detectible conjunctival inflammation. These effects were attenuated in both a global FcεRIa-knockout mice and after sensory neuronal-specific FcεRIa-knockdown in the mouse trigeminal ganglion. In an ovalbumin (OVA) induced murine ACJ model, FcεRIα was found upregulated in conjunctiva-innervating CGRP+ sensory neurons. Sensory neuronal-specific knockdown of FcεRIa significantly alleviated ocular itch in the ACJ mice without affecting the immune cell infiltration and mast cell activation in conjunctiva. Although FcεRIα mRNA expression was not increased by IgE in dissociated trigeminal ganglion neurons, FcεRIα protein level was enhanced by IgE in a cycloheximide-resistance manner, with concordant enhancement of neuronal responses to IgE-IC. In addition, incremental sensitization gradually enhanced the expression of FcεRIα in small-sized trigeminal neurons and aggravated OVA induced ocular itch. Conclusions Our study demonstrates that FcεRIα in pruriceptive neurons directly mediates IgE-IC evoked itch and plays an important role in ocular itch in a mouse model of ACJ. These findings reveal another axis of neuroimmune interaction in allergic itch condition independent to the classical IgE-mast cell pathway, and might suggest novel therapeutic strategies for the treatment of pruritus in ACJ and other immune-related disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02417-x.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
17
|
Abstract
INTRODUCTION Across the globe, chronic urticaria (CU), i.e. chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CINDU), is common, long-persisting and difficult to manage. Still, at least one-fifth is not sufficiently controlled by guideline-recommended treatment with H1-antihistamines and add-on therapy with the anti-IgE monoclonal antibody omalizumab. AREAS COVERED Using PubMed, ClinicalTrials.gov, Congress websites, and websites of the manufacturers, this review explored the pipeline, namely anti-IgE-, anti-cytokine-, anti-receptor biologics, and small molecules, in clinical development for CU. EXPERT OPINION The CU pipeline is promising. While three omalizumab biosimilars are investigated, the assumed early approval of ligelizumab will expand the effective and safe anti-IgE approach observed with omalizumab. For other anti-IgEs like UB-221, the development is behind. Data are too limited so far to clearly define the role of anti-cytokine and anti-cytokine receptor biologics such as dupilumab, tezepelumab, mepolizumab, benralizumab, and CDX-0159, of which only dupilumab is actually investigated in phase 3. Among three selective oral BTK inhibitors, remibrutinib, rilzabrutinib, and fenebrutinib, the development of remibrutinib is most advanced (phase 3). As the pipeline addresses different targets, study results will give deeper insights into the pathomechanisms of CU. Hopefully, in the next future additional approved and also more targeted approaches will be available.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Maurer M, Giménez‐Arnau A, Bernstein JA, Chu C, Danilycheva I, Hide M, Makris M, Metz M, Savic S, Sitz K, Soong W, Staubach P, Sussman G, Barve A, Burciu A, Hua E, Janocha R, Severin T. Sustained safety and efficacy of ligelizumab in patients with chronic spontaneous urticaria: A one-year extension study. Allergy 2021; 77:2175-2184. [PMID: 34773261 DOI: 10.1111/all.15175] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ligelizumab, a next-generation, humanized anti-immunoglobulin E (IgE) monoclonal antibody is in development as a treatment for patients with chronic spontaneous urticaria, whose symptoms are inadequately controlled with standard-of-care therapy. OBJECTIVE To evaluate the long-term safety and re-treatment efficacy of ligelizumab 240 mg in patients who completed the core study and extension study. METHODS This open-label, single-arm, long-term Phase 2b extension study was designed to assess patients who were previously administered various doses of ligelizumab, omalizumab or placebo in the Phase 2b, dose-finding core study and who presented with active disease after Week 32. In the extension study, patients received ligelizumab 240 mg subcutaneously every 4 weeks, for 52 weeks and were monitored post-treatment for 48 weeks. RESULTS Overall, ligelizumab was well-tolerated with no newly identified safety signals. A total of 95.4% (226/237) screened patients received ligelizumab 240 mg in the extension study; 84.1% (190/226) of patients experienced at least one treatment-emergent adverse event. Most reported events were mild (41.6%) or moderate (35.8%) and mostly unrelated to the study treatment. At Week 12, 46.5% of patients had a complete response increasing to 53.1% after 52 weeks. Following 52 weeks of extension study treatment, 75.8% (95% confidence interval, 69.9, 81.3) of patients had cumulative complete responses. The median time to relapse in complete responders was 38 weeks. CONCLUSION The long-term safety profile of ligelizumab 240 mg in patients with chronic spontaneous urticaria was consistent with the core study and re-treatment efficacy was shown. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02477332 and NCT02649218.
Collapse
Affiliation(s)
- Marcus Maurer
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | - Ana Giménez‐Arnau
- Dermatology Department, Hospital del Mar IMIM Universitat Autònoma Barcelona Barcelona Spain
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine and Bernstein Clinical Research Center Cincinnati Ohio USA
| | - Chia‐Yu Chu
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Inna Danilycheva
- National Research Center – Institute of Immunology Federal Medical‐Biological Agency of Russia Moscow Russia
| | - Michihiro Hide
- Department of Dermatology Hiroshima University Hiroshima Japan
| | - Michael Makris
- Allergy Unit 2nd Department of Dermatology and Venereology National and Kapodistrian University"Attikon” University Hospital Athens Greece
| | - Martin Metz
- Dermatological Allergology Allergie‐Centrum‐Charité Department of Dermatology and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | - Sinisa Savic
- Leeds Biomedical Research Centre Department of Clinical Immunology and Allergy Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM)St James's University Hospital Leeds UK
| | - Karl Sitz
- Little Rock Allergy and Asthma Clinic Little Rock Arkansas USA
| | - Weily Soong
- Alabama Allergy & Asthma Center – AllerVie Health Clinical Research Center of Alabama Birmingham Alabama USA
| | - Petra Staubach
- Department of Dermatology University Medical Center Mainz Germany
| | - Gordon Sussman
- Division of Allergy and Clinical Immunology University of Toronto Canada
| | - Avantika Barve
- Novartis Pharmaceuticals Corporation East Hanover New Jersey USA
| | | | - Eva Hua
- China Novartis Institutes for Biomedical Research Co. Ltd Shanghai China
| | | | | |
Collapse
|
19
|
Ando T, Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021; 10:cells10071697. [PMID: 34359869 PMCID: PMC8305778 DOI: 10.3390/cells10071697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The recent emergence of anti-immunoglobulin E (IgE) drugs and their candidates for humans has endorsed the significance of IgE-dependent pathways in allergic disorders. IgE is distributed locally in the tissues or systemically to confer a sensory mechanism in a domain of adaptive immunity to the otherwise innate type of effector cells, namely, mast cells and basophils. Bound on the high-affinity IgE receptor FcεRI, IgE enables fast memory responses against revisiting threats of venoms, parasites, and bacteria. However, the dysregulation of IgE-dependent reactions leads to potentially life-threatening allergic diseases, such as asthma and anaphylaxis. Therefore, reactivity of the IgE sensor is fine-tuned by various IgE-associating molecules. In this review, we discuss the mechanistic basis for how IgE-dependent mast cell activation is regulated by the IgE-associating molecules, including the newly developed therapeutic candidates.
Collapse
Affiliation(s)
- Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (T.A.); (J.K.); Tel.: +81-3-5802-1591 (T.A. & J.K.)
| |
Collapse
|
20
|
Passanisi S, Caminiti L, Zirilli G, Lombardo F, Crisafulli G, Aversa T, Pajno GB. Biologics in food allergy: up-to-date. Expert Opin Biol Ther 2021; 21:1227-1235. [PMID: 33733975 DOI: 10.1080/14712598.2021.1904888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: In recent years, the advent of immunotherapy has remarkably improved the management of IgE-mediated food allergy. However, some barriers still exist. Therefore, the effort of researchers aims to investigate new perspectives in the field of non-allergen specific therapy, also based on the current knowledge of the pathogenesis of this disease.Areas covered: This review aims to focus on the role of biologics as a treatment option in patients with IgE-mediated food allergy. These agents are characterized by their ability to inactivate the Th2 pro-inflammatory pathways. Biologics can be used both alone and in association with immunotherapy. Monoclonal antibodies targeting IgE, the IL-4/IL-13 axis, IL-5, and alarmins have been proposed and investigated for treating food allergy.Expert opinion: The clinical efficacy and safety of biologics have been demonstrated in several preclinical studies and randomized controlled trials. Future studies are still required to address current unmet needs, including the identification of the optimal dose to be used by ensuring the effectiveness of therapy.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Lucia Caminiti
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Giuseppina Zirilli
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Giuseppe Crisafulli
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Tommaso Aversa
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Giovanni B Pajno
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| |
Collapse
|
21
|
Wedi B, Traidl S. Anti-IgE for the Treatment of Chronic Urticaria. Immunotargets Ther 2021; 10:27-45. [PMID: 33628747 PMCID: PMC7898214 DOI: 10.2147/itt.s261416] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Urticaria and angioedema are very common. Management of chronic urticaria subtypes, which usually persist for many years, is challenging. Recent years have demonstrated that targeting IgE with antibodies provides a safe and efficient treatment approach. Whilst several anti-IgE antibodies have been developed, omalizumab is currently the only one approved for use. International and national guidelines recommend its use after failure of antihistamines at standard and increased dose. Whilst not yet approved, many new anti-IgE approaches are currently being investigated in pre-clinical studies or clinical trials. This non-systematic focused review summarizes current knowledge of omalizumab and other anti-IgE biologics in chronic urticaria using data extracted from PubMed, Google Scholar and clinical trial databases, clinicaltrials.gov and clinicaltrials.eu. For adults, there is good evidence from randomized clinical trials and real-world data that symptomatic treatment with omalizumab is efficacious and safe in chronic spontaneous urticaria (CSU), whereas evidence in chronic inducible urticaria (CINDU) and special populations is limited. Easy-to-use tools to identify non-responders and predict the required duration of treatment have not been established yet. Phase 2 b results of ligelizumab have not only demonstrated efficacy and safety but also superiority to omalizumab. Indeed, there is preliminary evidence that omalizumab non- or partial responders benefit from ligelizumab. Whereas further development of quilizumab was discontinued, other approaches, eg UB-221 or DARPins are under investigation. Anti-IgE treatment with omalizumab represents a landmark in the treatment of chronic urticaria, with and without angioedema, and there is light on the horizon suggesting success may come with various next-generation anti-IgE approaches.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Capturing transient antibody conformations with DNA origami epitopes. Nat Commun 2020; 11:3114. [PMID: 32561744 PMCID: PMC7305102 DOI: 10.1038/s41467-020-16949-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Revealing antibody-antigen interactions at the single-molecule level will deepen our understanding of immunology. However, structural determination under crystal or cryogenic conditions does not provide temporal resolution for resolving transient, physiologically or pathologically relevant functional antibody-antigen complexes. Here, we develop a triangular DNA origami framework with site-specifically anchored and spatially organized artificial epitopes to capture transient conformations of immunoglobulin Gs (IgGs) at room temperature. The DNA origami epitopes (DOEs) allows programmed spatial distribution of epitope spikes, which enables direct imaging of functional complexes with atomic force microscopy (AFM). We establish the critical dependence of the IgG avidity on the lateral distance of epitopes within 3–20 nm at the single-molecule level. High-speed AFM imaging of transient conformations further provides structural and dynamic evidence for the IgG avidity from monovalent to bivalent in a single event, which sheds light on various applications including virus neutralization, diagnostic detection and cancer immunotherapy. Understanding antibody-antigen interactions is important to deepen the understanding of immunology. Here, the authors report on the application of DNA origami structures for the controlled presentation of antigens to study antibody binding behaviours at room temperature.
Collapse
|
23
|
Abstract
INTRODUCTION Due to daily hives with itch, sleeplessness, and unforeseen development of angioedema, chronic spontaneous urticaria significantly impairs quality of life, often for years. Its management is challenging. In most cases, H1-antihistamines are not effective. Although the disease is not characterized by specific IgE antibodies against allergens, the last decade demonstrated that neutralizing IgE by using the monoclonal anti-IgE antibody Omalizumab is safe and effective. Nevertheless, symptoms are not controlled by Omalizumab in approximately one-fourth of patients. AREAS COVERED This review is focused on Ligelizumab (QGE031), a next-generation non-triggering fully human monoclonal antibody, with higher affinity to IgE compared to Omalizumab. EXPERT OPINION In chronic spontaneous urticaria, subcutaneous Ligelizumab once per month for five months has shown a clear dose-response relationship with respect to symptoms. Superiority over Omalizumab was noted whereas the safety profile was similar. Most common side effects were injection site reactions. In the near future, results from phase 3 trials, two of them including more than 1000 patients each, are awaited. Having a higher affinity to IgE and being more effective than Omalizumab, Ligelizumab has the potential to free chronic urticaria patients from year-long daily annoying symptoms that did not respond to standard therapy as recommended by current guidelines.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School , Hannover, Germany
| |
Collapse
|