1
|
Pan J, Yao WL, Liu LP, Wang BS, Chai WZ, Huang Z, Fan XP, He WH, Wang WH, Zhang WD. Moniezia benedeni infection increases IgE + cells in sheep (Ovis aries) small intestine. Vet Parasitol 2024; 328:110169. [PMID: 38520755 DOI: 10.1016/j.vetpar.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
The concentration of immunoglobulin (Ig) E is the lowest among serum Igs, but it can induces type I hypersensitivity and plays an important role in anti-parasitic infection. The present study aimed to explore the residence characteristics of IgE+ cells in the sheep small intestine and the impact of Moniezia benedeni infection on them. The recombinant plasmids pET-28a-IgE were constructed and induced and expressed in Escherichia coli. BL21 (DE3). The rabbit anti-sheep IgE polyclonal antibody was prepared using the obtained recombinant protein as antigen. Finally, the levels of IgE+ cells in the small intestine of healthy (Control group) and naturally M. benedeni-infected (Infected group) sheep were detected analyzed. The results showed that the rabbit anti-sheep IgE polyclonal antibody with good immunogenicity (titer = 1: 128000) could specifically bind to the heavy chain of natural sheep IgE. In the Control group, the IgE+ cells were mainly distributed in lamina propria of the small intestine, and the densities were significantly decreased from duodenum to ileum (P<0.05), with respective values of (4.28 cells / 104 μm2, 1.80 cells / 104 μm2, and 1.44 cells / 104 μm2 in duodenum, jejunum, and ileum. In the Infected group, IgE+ cells density were 6.26 cells / 104 μm2, 3.01 cells / 104 μm2, and 2.09 cells / 104 μm2 in duodenum, jejunum and ileum respectively, which were significantly higher in all segments compared to the Control group (P<0.05), increasing by 46.26%, 67.22% and 45.14%, respectively. In addition, compared with the Control group, the IgE protein levels were significantly increased in all intestinal segments of the Infected group (P<0.01), however, there was no significant differences among the different intestinal segments within the same group (P>0.05). The results demonstrated that M. benedeni infection could significantly increase the content of IgE and the distribution density of its secreting cells in sheep small intestine. The intestinal mucosal immune system of sheep presented obvious specificity against M. benedeni infection. This lays a good foundation for further exploring molecular mechanisms of the intestinal mucosal immune system monitoring and responding to M. benedeni infection.
Collapse
Affiliation(s)
- Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bao-Shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wen-Zhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xi-Ping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wan-Hong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Guthikonda MR, Manimala D, Aryasomayajula S, Gude A, Singhal M. Nasal and Serum Immunoglobulin E Levels in Symptomatic Allergic Rhinitis Patients: A Case-Control Study. Indian J Otolaryngol Head Neck Surg 2024; 76:503-507. [PMID: 38440571 PMCID: PMC10908889 DOI: 10.1007/s12070-023-04196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 03/06/2024] Open
Abstract
Allergic Rhinitis (AR) is an inflammatory condition of the nasal mucosa triggered by Immunoglobulin E (IgE) mediated response to exposure to allergens. The most common symptoms are nasal obstruction, sneezing, runny nose and these in addition to swollen, itchy, red and watery eyes. Recent studies have shown highly elevated immunoglobulin E levels in the airway mucosa independently of serum IgE levels and atopic status. Nasal mucosa has intrinsic capability to produce IgE in allergic rhinitis. The study was conducted to explore the levels of nasal total IgE and serum total IgE and their correlation in symptomatic AR patients. This was a case control-study and two groups participated in the study. The first group included 203 symptomatic patients who were diagnosed in the otorhinolaryngology clinic as cases of AR, known as AR group. The second group was control group and included 203 apparently healthy volunteers without any history suggestive of AR. The associated risk factors for severe allergic symptoms were assessed by logistic regression model. The mean differences between nasal total IgE and serum total IgE levels of both groups were compared by t-test. A correlation was investigated between nasal IgE and serum IgE in both the groups. The mean level of nasal total IgE and serum total IgE was found to be 103.9 and 291.4 IU/ml in AR group, respectively, and 17.5 and 67.5 IU/ml in the control group, respectively. Levels of nasal total IgE and serum total IgE were significantly higher in the nasal fluids and serum of symptomatic allergic rhinitis patients than in controls (p < 0.001 and < 0.001 respectively). A logistic regression model showed severity of allergic rhinitis was significantly associated with nasal total IgE levels. The correlation of nasal total IgE levels with serum total IgE levels in the control group was found to be statistically insignificant. However a statistically positive correlation was observed between nasal total IgE and serum total IgE levels in the AR group. It is possible that nasal IgE and serum IgE interact in the pathogenesis of AR and this is evident in the current study. Nasal IgE levels should be evaluated in severe symptomatic allergic rhinitis patients. The interaction between nasal IgE to serum IgE levels should be further investigated in AR patients for other possible prevalent endotypes of AR.
Collapse
Affiliation(s)
| | - Danda Manimala
- Department of Pathology, Gayatri Institute of Health Care & Medical Technology, GVP Medical College, Maridi Valley, Marikavalasa, Visakhapatnam, Andhra Pradesh 530048 India
| | - Sirish Aryasomayajula
- Department of Pathology, Gayatri Institute of Health Care & Medical Technology, GVP Medical College, Maridi Valley, Marikavalasa, Visakhapatnam, Andhra Pradesh 530048 India
| | - Aswini Gude
- Department of Pathology, Gayatri Institute of Health Care & Medical Technology, GVP Medical College, Maridi Valley, Marikavalasa, Visakhapatnam, Andhra Pradesh 530048 India
| | - Megha Singhal
- INHS Kalyani, Gandhigram, Visakhapatnam, Andhra Pradesh 530005 India
| |
Collapse
|
3
|
Weichwald C, Zettl I, Ellinger I, Niespodziana K, Waltl EE, Villazala-Merino S, Ivanov D, Eckl-Dorna J, Niederberger-Leppin V, Valenta R, Flicker S. Antibody Conjugates Bispecific for Pollen Allergens and ICAM-1 with Potential to Prevent Epithelial Allergen Transmigration and Rhinovirus Infection. Int J Mol Sci 2023; 24:ijms24032725. [PMID: 36769047 PMCID: PMC9917280 DOI: 10.3390/ijms24032725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Allergy and rhinovirus (RV) infections are major triggers for rhinitis and asthma, causing a socioeconomic burden. As RVs and allergens may act synergistically to promote airway inflammation, simultaneous treatment strategies for both causative agents would be innovative. We have previously identified the transmembrane glycoprotein intercellular adhesion molecule 1 (ICAM-1) as an anchor for antibody conjugates bispecific for ICAM-1 and Phleum pratense (Phl p) 2, a major grass pollen allergen, to block allergen transmigration through the epithelial barrier. Since ICAM-1 is a receptor for the major group RVs, we speculated that our bispecific antibody conjugates may protect against RV infection. Therefore, we created antibody conjugates bispecific for ICAM-1 and the major grass pollen allergen Phl p 5 and analyzed their capacity to affect allergen penetration and RV infection. Bispecific antibody conjugates significantly reduced the trans-epithelial migration of Phl p 5 and thus the basolateral Phl p 5 concentration and allergenic activity as determined by humanized rat basophilic leukemia cells and inhibited RV infection of cultured epithelial cells. A reduction in allergenic activity was obtained only through the prevention of allergen transmigration because the Phl p 5-specific IgG antibody did not block the allergen-IgE interaction. Our results indicate the potential of allergen/ICAM-1-specific antibody conjugates as a topical treatment strategy for allergy and RV infections.
Collapse
Affiliation(s)
- Christina Weichwald
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabella Ellinger
- Division of Cellular and Molecular Pathophysiology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katarzyna Niespodziana
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Eva E. Waltl
- Department of Otorhinolaryngology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Daniel Ivanov
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Rudolf Valenta
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- National Research Centre (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Sabine Flicker
- Division of Immunopathology, Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-51150
| |
Collapse
|
4
|
Zhang Y, Lan F, Zhang L. Advances and highlights in allergic rhinitis. Allergy 2021; 76:3383-3389. [PMID: 34379805 DOI: 10.1111/all.15044] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
Allergic rhinitis (AR) is a growing public health, medical and economic problem worldwide. The current review describes the major discoveries related to AR during the past 2 years, including risk factors for the prevalence of AR, the corresponding diagnostic strategy, precise underlying immunological mechanisms, and efficient therapies for AR during the ongoing global "coronavirus disease 2019" (COVID-19) pandemic. The review further attempts to highlight future research perspectives. Increasing evidence suggests that environmental exposures, climate changes, and lifestyle are important risk factors for AR. Consequently, detailed investigation of the exposome and the connection between environmental exposures and health in the future should provide better risk profiles instead of single predictors, and also help mitigate adverse health outcomes in allergic diseases. Although patients with dual AR, a newly defined AR phenotype, display perennial and seasonal allergens-related nasal symptoms, they are only allergic to seasonal allergens, indicating the importance of measuring inflammation at the local sites. Herein, we suggest that a combination of precise diagnosis in local sites and traditional diagnostic methods may enhance the precision medicine-based approach for management of AR; however, this awaits further investigations. Apart from traditional treatments, social distancing, washing hands, and disinfection are also required to better manage AR patients in the ongoing global COVID-19 pandemic. Despite recent advances in understanding the immune mechanisms underlying the effects of allergen immunotherapy (AIT), further understanding changes of cell profiles after AIT and accurately evaluate the efficacy of AIT are required.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - Luo Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| |
Collapse
|
5
|
Keshavarz B, Platts-Mills TAE, Wilson JM. The use of microarray and other multiplex technologies in the diagnosis of allergy. Ann Allergy Asthma Immunol 2021; 127:10-18. [PMID: 33450398 DOI: 10.1016/j.anai.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To give an overview and describe the strengths and weaknesses of immunoglobulin E (IgE) microarray and other multiplex assays that have been developed and are being used for allergy diagnostics. DATA SOURCES Queries for IgE microarray and multiplex assays were conducted with PubMed and Google Scholar, searching for primary articles and review papers. STUDY SELECTIONS We focused on articles written in English on commercially available IgE multiplex assays that were reported in the allergy and immunology literature. RESULTS Several commercial IgE assays that use microarray or other multiplex technology have been developed, and some have been implemented into clinical practice in Europe and Asia, with the Immuno Solid-Phase Allergen Chip being the most widely studied. Results of these assays generally correlate with results using "singleplex" IgE assays (eg, ImmunoCAP), though there can be variability among products and among allergens. A strength of the microarray technology is that IgE to a large number of allergens can be detected simultaneously in a single test, and only a small amount of patient serum is required. Cost, inadequate sensitivity under some scenarios, and difficulties with data interpretation, in some cases of 100 or more allergens, can be limitations. CONCLUSION IgE microarray assays are already a valuable tool in research applications. These assays, and also other forms of IgE multiplex assays, are likely to play an important role in the clinical practice of allergy in the future. Additional studies focused on clinical outcomes, and the development of more targeted allergen panels could facilitate increased clinical use.
Collapse
Affiliation(s)
- Behnam Keshavarz
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Thomas A E Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Jeffrey M Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|