1
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2025; 21:181-194. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Xu X, Li Y, Han T, Zhao Y, Wang X, Fu X, Mao H. The hidden dangers of short-term glucocorticoid use in children: A genomic analysis. Int Immunopharmacol 2024; 135:112323. [PMID: 38788448 DOI: 10.1016/j.intimp.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Glucocorticoid (GC) administration has been associated with adverse drug reactions (ADRs) affecting multiple organ systems. While long-term use is widely recognized as a significant independent predictor of ADRs, it is important to note that even short-term use can lead to serious ADRs. The considerable inter-individual variability in ADRs occurrence may be influenced by genetic factors. This study, we present a case of a child who experienced significant weight gain and osteoporosis, following a brief administration of GC. METHODS To comprehensively investigate the underlying mechanisms, we conducted a genomic analysis utilizing the whole exome sequencing (WES) technique. This analysis encompassed the examination of phase I and phase II metabolism, influx transport, efflux transport, and drug targeting. Additionally, a comprehensive analysis was conducted on a cohort of 52,119 children to determine their ABCB1 rs1045642 genotype, and an additional 37,884 children were tested for their CYP3A5 rs776746 genotype. RESULTS The pharmacogenetic analysis unveiled the presence of a high-risk variant in ABCB1 rs1045642 and a slow metabolism variant in CYP3A5 rs776746, both of which have the potential to substantially contribute to ADRs. The findings of this study indicate that the prevalence of ABCB1 rs1045642 CT type among patients was 47.58%, with TT type accounting for 15.69 % and CC type accounting for 36.73 %. Furthermore, the distribution of CYP3A5 rs776746 CC genotype was observed in 50.54 % of individuals, while CT and TT genotypes were present in 41.15 % and 8.31 % of the population respectively. The distribution of ABCB1 and CYP3A5 genotypes among the pediatric population in China displays notable features. Specifically, for the ABCB1 rs1045642 genotype, less than 50 % of children exhibit intermediate metabotypes. Conversely, among children with the CYP3A5 rs776746 genotype, the predominant cause for enzyme activity is the slow metabolic type, accounting for up to 90 % of cases. CONCLUSIONS Consequently, it is imperative to thoroughly evaluate the impact of allele mutation on the effectiveness and safety of glucocorticoid drugs or other medications metabolized by the ABCB1 and CYP3A5, particularly in the context of Chinese pediatric patients.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China; Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Yan Li
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Tongxin Han
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Yiming Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | | | - Huawei Mao
- Department of Immunity, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China; Ministry of Education Key Laboratory of Major Diseases in Children, Beijing 100045, China.
| |
Collapse
|
3
|
Espuela-Ortiz A, Martin-Gonzalez E, Poza-Guedes P, González-Pérez R, Herrera-Luis E. Genomics of Treatable Traits in Asthma. Genes (Basel) 2023; 14:1824. [PMID: 37761964 PMCID: PMC10531302 DOI: 10.3390/genes14091824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The astounding number of genetic variants revealed in the 15 years of genome-wide association studies of asthma has not kept pace with the goals of translational genomics. Moving asthma diagnosis from a nonspecific umbrella term to specific phenotypes/endotypes and related traits may provide insights into features that may be prevented or alleviated by therapeutical intervention. This review provides an overview of the different asthma endotypes and phenotypes and the genomic findings from asthma studies using patient stratification strategies and asthma-related traits. Asthma genomic research for treatable traits has uncovered novel and previously reported asthma loci, primarily through studies in Europeans. Novel genomic findings for asthma phenotypes and related traits may arise from multi-trait and specific phenotyping strategies in diverse populations.
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Perez-Garcia J, Espuela-Ortiz A, Hernández-Pérez JM, González-Pérez R, Poza-Guedes P, Martin-Gonzalez E, Eng C, Sardón-Prado O, Mederos-Luis E, Corcuera-Elosegui P, Sánchez-Machín I, Korta-Murua J, Villar J, Burchard EG, Lorenzo-Diaz F, Pino-Yanes M. Human genetics influences microbiome composition involved in asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol 2023; 152:799-806.e6. [PMID: 37301411 PMCID: PMC10522330 DOI: 10.1016/j.jaci.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 RESULTS Genes associated with exacerbation-related airway-microbiome traits were enriched in asthma comorbidities development (ie, reflux esophagitis, obesity, and smoking), and were likely regulated by trichostatin A and the nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein transcription factors (7.8 × 10-13 ≤ false discovery rate ≤ 0.022). Enrichment in smoking, trichostatin A, nuclear factor-κB, and glucocorticosteroid receptor were replicated in the saliva samples from diverse populations (4.42 × 10-9 ≤ P ≤ .008). The ICS-response-associated single nucleotide polymorphisms rs5995653 (APOBEC3B-APOBEC3C), rs6467778 (TRIM24), and rs5752429 (TPST2) were identified as microbiome quantitative trait loci of Streptococcus, Tannerella, and Campylobacter in the upper airway (0.027 ≤ false discovery rate ≤ 0.050). CONCLUSIONS Genes associated with asthma exacerbation-related microbiome traits might influence asthma comorbidities. We reinforced the therapeutic interest of trichostatin A, nuclear factor-κB, the glucocorticosteroid receptor, and CCAAT/enhancer-binding protein in asthma exacerbations.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Pulmonary Medicine Service, Hospital Universitario N.S de Candelaria, La Laguna, Tenerife, Spain; Pulmonary Medicine Section, Hospital Universitario de La Palma, La Palma, Spain
| | - Ruperto González-Pérez
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paloma Poza-Guedes
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, Ontario, Canada
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| |
Collapse
|
5
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
6
|
Gorenjak M, Jezernik G, Krušič M, Skok P, Potočnik U. Identification of Novel Loci Involved in Adalimumab Response in Crohn's Disease Patients Using Integration of Genome Profiling and Isoform-Level Immune-Cell Deconvoluted Transcriptome Profiling of Colon Tissue. Pharmaceutics 2022; 14:1893. [PMID: 36145641 PMCID: PMC9500628 DOI: 10.3390/pharmaceutics14091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Crohn's disease is a consequence of dysregulated inflammatory response to the host's microbiota. Although anti-TNF treatment improves the quality of the patient's life, a large proportion of patients lose response to the treatment. The past decade of research has led to a continuum of studies showcasing the heterogeneity of anti-TNF response; thus, the aim of the present study was to dissect transcriptome-wide findings to transcript isoform specific levels and combine the analyses with refined information of immune cell landscapes in colon tissue, and subsequently select promising candidates using gene ontology and genomic integration. We enrolled Slovenian Crohn's disease patients who were naïve with respect to adalimumab treatment. We performed colon tissue RNA sequencing and peripheral blood mononuclear cell DNA genotyping with a subsequent contemporary integrative approach to combine immune cell deconvoluted isoform transcript specific transcriptome analysis, gene ontology layering and genomic data. We identified nine genes (MACF1, CTSE, HDLBP, HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) with 15 transcripts and 16 variants involved in the adalimumab response. Our study identified loci, some of which were previously shown to contribute to inflammatory bowel disease susceptibility, as novel loci involved in adalimumab response in Crohn's disease patients.
Collapse
Affiliation(s)
- Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Martina Krušič
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Pavel Skok
- Department of Gastroenterology, University Clinical Centre Maribor, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Multiomics Analysis Identifies BIRC3 as a Novel Glucocorticoid Response-Associated Gene. J Allergy Clin Immunol 2021; 149:1981-1991. [PMID: 34971648 DOI: 10.1016/j.jaci.2021.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inhaled corticosteroid (ICS) response among patients with asthma is influenced by genetics, but biologically actionable insights based on associations have not been found. Various glucocorticoid response omics datasets are available to interrogate their biological effects. OBJECTIVE We sought to identify functionally relevant ICS response genetic associations by integrating complementary multiomics datasets. METHODS Variants with p-values<10-4 from a previous ICS response genome-wide association study were re-ranked based on integrative scores determined from: i) glucocorticoid receptor (GR)- and ii) RNA polymerase II (RNAP II)-binding regions inferred from ChIP-Seq data for three airway cell types, iii) glucocorticoid response element (GRE) motifs, iv) differentially expressed genes in response to glucocorticoid exposure according to 20 transcriptomic datasets, and v) expression quantitative trait loci (eQTLs) from GTEx. Candidate variants were tested for association with ICS response and asthma in six independent studies. RESULTS Four variants had significant (q-value<0.05) multiomics integrative scores. These variants were in a locus consisting of 52 variants in high LD (r2≥0.8) near GR-binding sites by the gene BIRC3. Variants were also BIRC3 eQTLs in lung, and two were within/near putative GRE motifs. BIRC3 had increased RNAP II occupancy and gene expression with glucocorticoid exposure in two ChIP-Seq and 13 transcriptomic datasets. Some BIRC3 variants in the 52-variant locus were associated (p-value<0.05) with ICS response in three independent studies and others with asthma in one study. CONCLUSION BIRC3 should be prioritized for further functional studies of ICS response. CLINICAL IMPLICATION Genetic variation near BIRC3 may influence ICS response in people with asthma.
Collapse
|
8
|
Ogulur I, Pat Y, Ardicli O, Barletta E, Cevhertas L, Fernandez‐Santamaria R, Huang M, Bel Imam M, Koch J, Ma S, Maurer DJ, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Rodriguez‐Coira J, Satitsuksanoa P, Schneider SR, Wallimann A, Zhakparov D, Ziadlou R, Brüggen M, Veen W, Sokolowska M, Baerenfaller K, Zhang L, Akdis M, Akdis CA. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76:3659-3686. [PMID: 34519063 PMCID: PMC9292545 DOI: 10.1111/all.15089] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network‐based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point‐of‐care systems. Ideally, samples should be collected using quick, cost‐efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro‐inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID‐19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID‐19 pandemic.
Collapse
|
9
|
Agache I, Eguiluz‐Gracia I, Cojanu C, Laculiceanu A, Giacco S, Zemelka‐Wiacek M, Kosowska A, Akdis CA, Jutel M. Advances and highlights in asthma in 2021. Allergy 2021; 76:3390-3407. [PMID: 34392546 DOI: 10.1111/all.15054] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
Last year brought a significant advance in asthma management, unyielding to the pressure of the pandemics. Novel key findings in asthma pathogenesis focus on the resident cell compartment, epigenetics and the innate immune system. The precision immunology unbiased approach was supplemented with novel tools and greatly facilitated by the use of artificial intelligence. Several randomised clinical trials and good quality real-world evidence shed new light on asthma treatment and supported the revision of several asthma guidelines (GINA, Expert Panel Report 3, ERS/ATS guidelines on severe asthma) and the conception of new ones (EAACI Guidelines for the use of biologicals in severe asthma). Integrating asthma management within the broader context of Planetary Health has been put forward. In this review, recently published articles and clinical trials are summarised and discussed with the goal to provide clinicians and researchers with a concise update on asthma research from a translational perspective.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Ibon Eguiluz‐Gracia
- Allergy Unit IBIMA‐Regional University Hospital of MalagaUMA, RETICS ARADyALBIONAND Malaga Spain
| | | | | | - Stefano Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | | | - Anna Kosowska
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wroclaw Poland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wroclaw Poland
| |
Collapse
|
10
|
Krsteski J, Gorenjak M, But I, Pakiž M, Potočnik U. Dysregulation of Synaptic Signaling Genes Is Involved in Biology of Uterine Leiomyoma. Genes (Basel) 2021; 12:1179. [PMID: 34440356 PMCID: PMC8394462 DOI: 10.3390/genes12081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine leiomyomas are tumors, which are hormone driven and originate from the smooth muscle layer of the uterine wall. In addition to known genes in leiomyoma pathogenesis, recent approaches also highlight epigenetic malfunctions as an important mechanism of gene dysregulation. RNA sequencing raw data from pair-matched normal myometrium and fibroid tumors from two independent studies were used as discovery and validation sets and reanalyzed. RNA extracted from normal myometrium and fibroid tumors from 58 Slovenian patients was used as independent confirmation of most significant differentially expressed genes. Subsequently, GWA data from leiomyoma patients were used in order to identify genetic variants at epigenetic marks. Gene Ontology analysis of the overlap of two independent RNA-seq analyses showed that NPTX1, NPTX2, CHRM2, DRD2 and CACNA1A were listed as significant for several enriched GO terms. All five genes were subsequently confirmed in the independent Slovenian cohort. Additional integration and functional analysis showed that genetic variants in these five gene regions are listed at a chromatin structure and state, predicting promoters, enhancers, DNase hypersensitivity and altered transcription factor binding sites. We identified a unique subgroup of dysregulated synaptic signaling genes involved in the biology and pathogenesis of leiomyomas, adding to the complexity of tumor biology.
Collapse
Affiliation(s)
- Jovan Krsteski
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.K.); (M.G.)
| | - Mario Gorenjak
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.K.); (M.G.)
| | - Igor But
- Department of General Gynecology and Gynecological Urology, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (I.B.); (M.P.)
| | - Maja Pakiž
- Department of General Gynecology and Gynecological Urology, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (I.B.); (M.P.)
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.K.); (M.G.)
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
11
|
Hernandez-Pacheco N, Gorenjak M, Li J, Repnik K, Vijverberg SJ, Berce V, Jorgensen A, Karimi L, Schieck M, Samedy-Bates LA, Tavendale R, Villar J, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Kabesch M, Hawcutt DB, Turner S, Palmer CN, Tantisira KG, Burchard EG, Maitland-van der Zee AH, Flores C, Potočnik U, Pino-Yanes M. Identification of ROBO2 as a Potential Locus Associated with Inhaled Corticosteroid Response in Childhood Asthma. J Pers Med 2021; 11:jpm11080733. [PMID: 34442380 PMCID: PMC8399629 DOI: 10.3390/jpm11080733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
| | - Jiang Li
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Department of Pediatrics, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| | - Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Lesly-Anne Samedy-Bates
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Calle Barranco de la Ballena s/n, 35019 Las Palmas de Gran Canaria, Spain
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Somnath Mukhopadhyay
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
- Academic Department of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children’s Hospital, 94 N-S Rd, Falmer, Brighton BN2 5BE, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 200 London Rd, Liverpool L3 9TA, UK;
| | - Katia M. C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
| | - Daniel B. Hawcutt
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool L69 3BX, UK;
- Alder Hey Children’s Hospital, E Prescot Rd, Liverpool L14 5AB, UK
| | - Steve Turner
- Child Health, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK;
| | - Colin N. Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Kelan G. Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Polígono Industrial de Granadilla, 38600 Granadilla, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
12
|
Genetic Determinants of Poor Response to Treatment in Severe Asthma. Int J Mol Sci 2021; 22:ijms22084251. [PMID: 33923891 PMCID: PMC8073667 DOI: 10.3390/ijms22084251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/02/2023] Open
Abstract
Severe asthma is a multifactorial disorder with marked phenotypic heterogeneity and complex interactions between genetics and environmental risk factors, which could, at least in part, explain why during standard pharmacologic treatment, many patients remain poorly controlled and at an increased risk of airway remodeling and disease progression. The concept of “precision medicine” to better suit individual unique needs is an emerging trend in the management of chronic respiratory diseases. Over the past few years, Genome-Wide Association Studies (GWAS) have revealed novel pharmacogenetic variants related to responses to inhaled corticosteroids and the clinical efficacy of bronchodilators. Optimal clinical response to treatment may vary between racial/ethnic groups or individuals due to genetic differences. It is also plausible to assume that epigenetic factors play a key role in the modulation of gene expression patterns and inflammatory cytokines. Remarkably, specific genetic variants related to treatment effectiveness may indicate promising pathways for novel therapies in severe asthma. In this review, we provide a concise update of genetic determinants of poor response to treatment in severe asthma and future directions in the field.
Collapse
|
13
|
Gorenjak M, Zupin M, Jezernik G, Skok P, Potočnik U. Omics data integration identifies ELOVL7 and MMD gene regions as novel loci for adalimumab response in patients with Crohn's disease. Sci Rep 2021; 11:5449. [PMID: 33750834 PMCID: PMC7970911 DOI: 10.1038/s41598-021-84909-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Response to anti-TNF therapy is of pivotal importance in patients with Crohn's disease (CD). Here we integrated our and previously reported PBMC derived transcriptomic and genomic data for identification of biomarkers for discrimination between responders and non-responders to anti-TNF therapy. CD patients, who were naïve with respect to the treatment with biologicals, were enrolled in the study. DNA and RNA were extracted from peripheral blood mononuclear cells. RNA-seq was performed using BGISEQ-500. Genotyping was performed using Infinium Global Screening Array. Association regressions were carried out with 12 week response to adalimumab as an outcome variable. RNA-seq analysis confirmed 7 out of 65 previously suggested genes involved in anti-TNF response. Subsequently, analysis of single nucleotide variants in regions of confirmed genes identified 5 variants near MMD and two in ELOVL7 intronic regions associated with treatment response to anti-TNF. Functional analysis has shown that rs1465352, rs4422035 and rs78620886 are listed at H3K9ac_Pro histone modification epigenetic mark. The present study confirmed MMD and ELOVL7 involvement in anti-TNF response and revealed that the regulation of MMD and ELOVL7 gene regions in ADA response may be a part of a complex interplay extending from genetic to epigenetic and to transcriptomic level.
Collapse
Affiliation(s)
- Mario Gorenjak
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Mateja Zupin
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Gregor Jezernik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Pavel Skok
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- Department of Gastroenterology, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia.
| |
Collapse
|