1
|
Yang X, Li S, Chen A, Wang H, Deng S, Ni B, Song Z, Chen Q. Distinct IgE sensitization profiles in chronic urticaria: a comparative study with classic allergic diseases. Front Immunol 2024; 15:1458839. [PMID: 39703516 PMCID: PMC11655319 DOI: 10.3389/fimmu.2024.1458839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Chronic urticaria (CU) is not traditionally classified as an allergic disease, but emerging evidence suggests a link to atopy. The quintessential marker of atopy is IgE sensitization, there is scarce information on the IgE sensitization characteristics of CU. Methods To investigate IgE sensitization characteristics in CU, and compare them with classic allergic diseases. We retrospectively analyzed the results of specific IgE (sIgE) and total IgE (tIgE) in CU patients, explored the distribution patterns of these atopic markers in CU, and compared these data with those of atopic dermatitis (AD), allergic rhinitis (AR), asthma (AS), and healthy controls (HC). Results 1149 patients (396 CU, 411 AD, 101 AR, 139 AS and 102 HC) were included in the study. 33.1% of CU patients showed positive sIgE and 49.0 % had elevated tIgE levels, significantly higher than those in HC. Comparative analysis with classic allergic diseases showed CU patients had a lower sIgE positivity rate but no significant difference in tIgE levels. Gender and age influenced sensitization profiles, with male CU patients showing a higher sIgE positivity rate. The distribution of sIgE levels, allergen categories, and tIgE elevated levels range in CU differed from classic allergic disease. The concordance rate between sIgE and tIgE results in CU was lower than in classic allergic disease. Conclusion Our study reveals that a significant proportion of CU patients display IgE sensitization, suggesting a clear atopic background compared to the general population. However, the IgE sensitization profile in CU differs from that of classical allergic diseases such as AD, AR, and AS, characterized by relatively lower intensity of IgE sensitization. The underlying reasons for this phenomenon and its clinical implications in CU warrant further research.
Collapse
Affiliation(s)
- Xianjie Yang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shifei Li
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Anqi Chen
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huan Wang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sisi Deng
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qiquan Chen
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Pathophysiology, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S. Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, NY
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
3
|
Baysac K, Sun G, Nakano H, Schmitz EG, Cruz AC, Fisher C, Bailey AC, Mace E, Milner JD, Ombrello MJ. PLCG2-associated immune dysregulation (PLAID) comprises broad and distinct clinical presentations related to functional classes of genetic variants. J Allergy Clin Immunol 2024; 153:230-242. [PMID: 37769878 PMCID: PMC11337301 DOI: 10.1016/j.jaci.2023.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.
Collapse
Affiliation(s)
- Kathleen Baysac
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroto Nakano
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Elizabeth G Schmitz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Anthony C Cruz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Charles Fisher
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Alexis C Bailey
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Emily Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Joshua D Milner
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
4
|
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, Fong J, Massaad MJ, Sefer AP, Kara A, Babayeva R, Eltan SB, Yucelten AD, Bozkurtlar E, Cinel L, Karakoc-Aydiner E, Zheng Y, Wu H, Ozen A, Schmitz-Abe K, Chatila TA. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol 2023; 152:182-194.e7. [PMID: 36758835 PMCID: PMC10330134 DOI: 10.1016/j.jaci.2023.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Inborn errors of immunity have been implicated in causing immune dysregulation, including allergic diseases. STAT6 is a key regulator of allergic responses. OBJECTIVES This study sought to characterize a novel gain-of-function STAT6 mutation identified in a child with severe allergic manifestations. METHODS Whole-exome and targeted gene sequencing, lymphocyte characterization, and molecular and functional analyses of mutated STAT6 were performed. RESULTS This study reports a child with a missense mutation in the DNA binding domain of STAT6 (c.1114G>A, p.E372K) who presented with severe atopic dermatitis, eosinophilia, and elevated IgE. Naive lymphocytes from the affected patient displayed increased TH2- and suppressed TH1- and TH17-cell responses. The mutation augmented both basal and cytokine-induced STAT6 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reversed STAT6 hyperresponsiveness to IL-4, normalized TH1 and TH17 cells, suppressed the eosinophilia, and improved the patient's atopic dermatitis. CONCLUSIONS This study identified a novel inborn error of immunity due to a STAT6 gain-of-function mutation that gave rise to severe allergic dysregulation. Janus kinase inhibitor therapy could represent an effective targeted treatment for this disorder.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
5
|
Wade-Vallance AK, Yang Z, Libang JB, Robinson MJ, Tarlinton DM, Allen CD. B cell receptor ligation induces IgE plasma cell elimination. J Exp Med 2023; 220:e20220964. [PMID: 36880536 PMCID: PMC9997509 DOI: 10.1084/jem.20220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
The proper regulation of IgE production safeguards against allergic disease, highlighting the importance of mechanisms that restrict IgE plasma cell (PC) survival. IgE PCs have unusually high surface B cell receptor (BCR) expression, yet the functional consequences of ligating this receptor are unknown. Here, we found that BCR ligation induced BCR signaling in IgE PCs followed by their elimination. In cell culture, exposure of IgE PCs to cognate antigen or anti-BCR antibodies induced apoptosis. IgE PC depletion correlated with the affinity, avidity, amount, and duration of antigen exposure and required the BCR signalosome components Syk, BLNK, and PLCγ2. In mice with a PC-specific impairment of BCR signaling, the abundance of IgE PCs was selectively increased. Conversely, BCR ligation by injection of cognate antigen or anti-IgE depleted IgE PCs. These findings establish a mechanism for the elimination of IgE PCs through BCR ligation. This has important implications for allergen tolerance and immunotherapy as well as anti-IgE monoclonal antibody treatments.
Collapse
Affiliation(s)
- Adam K. Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy B. Libang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus J. Robinson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Christopher D.C. Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Newman R, Tolar P. Chronic calcium signaling in IgE + B cells limits plasma cell differentiation and survival. Immunity 2021; 54:2756-2771.e10. [PMID: 34879220 DOI: 10.1016/j.immuni.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 01/28/2023]
Abstract
In contrast to other antibody isotypes, B cells switched to IgE respond transiently and do not give rise to long-lived plasma cells (PCs) or memory B cells. To better understand IgE-BCR-mediated control of IgE responses, we developed whole-genome CRISPR screening that enabled comparison of IgE+ and IgG1+ B cell requirements for proliferation, survival, and differentiation into PCs. IgE+ PCs exhibited dependency on the PI3K-mTOR axis that increased protein amounts of the transcription factor IRF4. In contrast, loss of components of the calcium-calcineurin-NFAT pathway promoted IgE+ PC differentiation. Mice bearing a B cell-specific deletion of calcineurin B1 exhibited increased production of IgE+ PCs. Mechanistically, sustained elevation of intracellular calcium in IgE+ PCs downstream of the IgE-BCR promoted BCL2L11-dependent apoptosis. Thus, chronic calcium signaling downstream of the IgE-BCR controls the self-limiting character of IgE responses and may be relevant to the accumulation of IgE-producing cells in allergic disease.
Collapse
Affiliation(s)
- Rebecca Newman
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|