1
|
Tossavainen T, Martikainen MV, Loukola H, Roponen M. Common Pollen Modulate Immune Responses against Viral-Like Challenges in Airway Coculture Model. J Immunol Res 2023; 2023:6639092. [PMID: 37965270 PMCID: PMC10643028 DOI: 10.1155/2023/6639092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Recent research indicates that exposure to pollen increases the risk and severity of respiratory infections, while studies also suggest that it may possess a protective function. Our aim was to investigate how exposure to common pollen modifies airway cells' responses to viral- or bacterial-like challenges and vice versa. Cocultured A549 and THP-1 cells were exposed to three doses of four different pollens (Alnus glutinosa, Betula pendula, Phleum pratense, or Ambrosia artemisiifolia) and subsequently to Toll-like receptor (TLR) ligands mimicking bacterial and viral challenges (TLR3, TLR4, TLR7/8). The stimulation experiment was replicated in reverse order. Toxicological and immunological end points were analyzed. When cells were primed with pollen, especially with grass (P. pratense) or weed (A. artemisiifolia), the ability of cells to secrete cytokines in response to bacterial- and viral-like exposure was decreased. In contrast, cells primed with viral ligand TLR7/8 showed greater cytokine responses against pollen than cells exposed to ligands or pollen alone. Our results suggest that pollen exposure potentially weakens immune reactions to bacterial- or viral-like challenges by modulating cytokine production. They also indicate that TLR7/8-mediated viral challenges could elicit exaggerated immune responses against pollen. Both mechanisms could contribute to the acceleration and complication of infections during the pollen season.
Collapse
Affiliation(s)
- Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna Loukola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Martikainen MV, Tossavainen T, Hannukka N, Roponen M. Pollen, respiratory viruses, and climate change: Synergistic effects on human health. ENVIRONMENTAL RESEARCH 2023; 219:115149. [PMID: 36566960 DOI: 10.1016/j.envres.2022.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, evidence of the synergistic effects of pollen and viruses on respiratory health has begun to accumulate. Pollen exposure is a known risk factor for the incidence and severity of respiratory viral infections. However, recent evidence suggests that pollen exposure may also inhibit or weaken viral infections. A comprehensive summary has not been made and a consensus on the synergistic health effects has not been reached. It is highly possible that climate change will increase the significance of pollen exposure as a cause of respiratory problems and, at the same time, affect the risk of infectious disease outbreaks. It is important to accurately assess how these two factors affect human health separately and concurrently. In this review article, for the first time, the data from previous studies are combined and reviewed and potential research gaps concerning the synergistic effects of pollen and viral exposure are identified.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Hannukka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Fneish Z, Becker J, Mulenge F, Costa B, Krajewski L, Duran V, Ziegler A, Sommer V, Traidl-Hoffmann C, Gilles S, Kalinke U. Birch pollen extract enhances human cytomegalovirus replication in monocyte-derived dendritic cells. Allergy 2023; 78:543-546. [PMID: 36038150 DOI: 10.1111/all.15497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Zeinab Fneish
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Luise Krajewski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Veronica Duran
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Annett Ziegler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Vivien Sommer
- AYOXXA Biosystems GmbH, BioCampus Cologne, Köln, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Christine-Kühne Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|