1
|
Mallarpu CS, Chelluri SI, Katragadda TK, Singarapu M, Chelluri LK, Madiraju C. Programmed cell death markers in COVID-19 survivors with and without sepsis. Front Immunol 2025; 16:1535938. [PMID: 40051620 PMCID: PMC11882558 DOI: 10.3389/fimmu.2025.1535938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Sepsis remains a leading cause of mortality, especially in COVID-19 patients, due to delayed diagnosis and limited therapeutic options. While the mechanisms of programmed cell death (PCD) in COVID-19 and sepsis are complex, understanding the molecular markers involved in these processes may aid in assessing disease severity. This study aimed to investigate the roles of PCD markers, inflammatory cytokines, and MHC molecules in distinguishing disease severity in COVID-19 patients with and without sepsis. Methods The study involved adult patients (≥18 years) who survived COVID-19, grouped into four cohorts: COVID-19 with sepsis (C19wSepsis), COVID-19 without sepsis (C19NoSepsis), sepsis alone, and healthy controls. Serum and peripheral blood mononuclear cells (PBMCs) from each cohort were analyzed using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. PCD markers (caspase-3, caspase-1, MLKL, LC3B, p62/SQSTM1), inflammatory cytokines (IL-1-beta, IFN-gamma), and MHC molecules (MHC I-A, MHC II-DRB1) were assessed. Statistical analyses were performed to evaluate differences in marker levels between and within cohorts. Results The analysis identified two distinct molecular signatures associated with disease severity. The first signature, characterized by elevated levels of secreted markers of PCD, IL-1-beta, IFN-gamma, MHC I-A and MHC II-DRB1, was common to the C19wSepsis and C19NoSepsis cohorts. The second signature, which was more prominent in the cellular markers of PCD (caspase-1, caspase-3, MLKL, p62/SQSTM1), was uniquely associated with the C19wSepsis cohort. Conclusion These findings provide insight into the molecular signatures distinguishing immune responses in COVID-19-related sepsis and may serve as valuable biomarkers for assessing disease severity, while guiding therapeutic interventions in critical care settings.
Collapse
Affiliation(s)
- Chandra Shekar Mallarpu
- Department of Transplant Immunology and Stem Cell Lab, Global Medical Education and Research Foundation, Hyderabad, India
| | | | | | - Maneendra Singarapu
- Department of Respiratory and Critical Care Medicine, Gleneagles Hospitals, Hyderabad, India
| | - Lakshmi Kiran Chelluri
- Department of Transplant Immunology and Stem Cell Lab, Global Medical Education and Research Foundation, Hyderabad, India
| | - Charitha Madiraju
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
- Department of Pharmaceutical Sciences, Marshall B. Ketchum University College of Pharmacy, Fullerton, CA, United States
| |
Collapse
|
2
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
3
|
Li B, Bai J, Xiong Y, Guo D, Fu B, Deng G, Wu H. Understanding the mechanisms and treatments of long COVID to address future public health risks. Life Sci 2024; 353:122938. [PMID: 39084516 DOI: 10.1016/j.lfs.2024.122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The 2019 coronavirus disease (COVID-19), triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has seen numerous individuals undergo and recover from it, drawing extensive attention to their health conditions. Extensive studies indicate that even after surpassing the acute phase of infection, patients continue to experience persistent symptoms such as fatigue, pain, depression, weakening, and anosmia. COVID-19 appears not to have concluded but rather to persist long-term in certain individuals, termed as "long COVID." This represents a heterogeneous ailment involving multiple organ systems, with a perceived complex and still elusive pathogenesis. Among patients with long COVID, observations reveal immune dysregulation, coagulation impairments, and microbial dysbiosis, considered potential mechanisms explaining sustained adverse outcomes post COVID-19. Based on the multifactorial nature, varied symptoms, and heterogeneity of long COVID, we have summarized several categories of current therapeutic approaches. Furthermore, the symptoms of long COVID resemble those of other viral illnesses, suggesting that existing knowledge may offer novel insights into long-term COVID implications. Here, we provide an overview of existing literature associated with long COVID and summarize potential mechanisms, treatment modalities, and other analogous conditions. Lastly, we underscore the inadequacies in long COVID treatment approaches and emphasize the significance of conducting further research and clinical trials.
Collapse
Affiliation(s)
- Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Junlu Bai
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
4
|
Li Y, Tang L, Wang F, Gao C, Yang Q, Luo L, Wei J, Tang Q, Qi M. Hub genes identification and validation of ferroptosis in SARS-CoV-2 induced ARDS: perspective from transcriptome analysis. Front Immunol 2024; 15:1407924. [PMID: 39170609 PMCID: PMC11335500 DOI: 10.3389/fimmu.2024.1407924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Acute Respiratory Distress Syndrome (ARDS) poses a significant health challenge due to its high incidence and mortality rates. The emergence of SARS-CoV-2 has added complexity, with evidence suggesting a correlation between COVID-19 induced ARDS and post-COVID symptoms. Understanding the underlying mechanisms of ARDS in COVID-19 patients is crucial for effective clinical treatment. Method To investigate the potential role of ferroptosis in SARS-CoV-2 induced ARDS, we conducted a comprehensive analysis using bioinformatics methods. Datasets from the Gene Expression Omnibus (GEO) were utilized, focusing on COVID-19 patients with varying ARDS severity. We employed weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and single-cell sequencing to identify key genes associated with ferroptosis in ARDS. Hub genes were validated using additional GEO datasets and cell experiment. Result The analysis discerned 916 differentially expressed genes in moderate/severe ARDS patients compared to non-critical individuals. Weighted Gene Co-expression Network Analysis (WGCNA) unveiled two modules that exhibited a positive correlation with ARDS, subsequently leading to the identification of 15 hub genes associated with ferroptosis. Among the noteworthy hub genes were MTF1, SAT1, and TXN. Protein-protein interaction analysis, and pathway analysis further elucidated their roles. Immune infiltrating analysis highlighted associations between hub genes and immune cells. Validation in additional datasets confirmed the upregulation of MTF1, SAT1, and TXN in SARS-CoV-2-induced ARDS. This was also demonstrated by qRT-PCR results in the BEAS-2B cells vitro model, suggesting their potential as diagnostic indicators. Discussion This study identifies MTF1, SAT1, and TXN as hub genes associated with ferroptosis in SARS-CoV-2-induced ARDS. These findings provide novel insights into the molecular mechanisms underlying ARDS in COVID-19 patients and offer potential targets for immune therapy and targeted treatment. Further experimental validation is warranted to solidify these findings and explore therapeutic interventions for ARDS in the context of COVID-19.
Collapse
Affiliation(s)
- Yutang Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Tang
- The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qi Yang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liyu Luo
- College of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Jiahang Wei
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qiuyun Tang
- Department of Oncology, Health Center of Chicheng Town, Suining, China
| | - Mingran Qi
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Oh JJ, Jaggi U, Tormanen K, Wang S, Hirose S, Ghiasi H. The anti-apoptotic function of HSV-1 LAT in neuronal cell cultures but not its function during reactivation correlates with expression of two small non-coding RNAs, sncRNA1&2. PLoS Pathog 2024; 20:e1012307. [PMID: 38857310 PMCID: PMC11192303 DOI: 10.1371/journal.ppat.1012307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
Multiple functions are associated with HSV-1 latency associated transcript (LAT), including establishment of latency, virus reactivation, and antiapoptotic activity. LAT encodes two sncRNAs that are not miRNAs and previously it was shown that they have antiapoptotic activity in vitro. To determine if we can separate the antiapoptotic function of LAT from its latency-reactivation function, we deleted sncRNA1 and sncRNA2 sequences in HSV-1 strain McKrae, creating ΔsncRNA1&2 recombinant virus. Deletion of the sncRNA1&2 in ΔsncRNA1&2 virus was confirmed by complete sequencing of ΔsncRNA1&2 virus and its parental virus. Replication of ΔsncRNA1&2 virus in tissue culture or in the eyes of WT infected mice was similar to that of HSV-1 strain McKrae (LAT-plus) and dLAT2903 (LAT-minus) viruses. The levels of gB DNA in trigeminal ganglia (TG) of mice latently infected with ΔsncRNA1&2 virus was intermediate to that of dLAT2903 and McKrae infected mice, while levels of LAT in TG of latently infected ΔsncRNA1&2 mice was significantly higher than in McKrae infected mice. Similarly, the levels of LAT expression in Neuro-2A cells infected with ΔsncRNA1&2 virus was significantly higher than in McKrae infected cells. Reactivation in TG of ΔsncRNA1&2 infected mice was similar to that of McKrae and time of reactivation in both groups were significantly faster than dLAT2903 infected mice. However, levels of apoptosis in Neuro-2A cells infected with ΔsncRNA1&2 virus was similar to that of dLAT2903 and significantly higher than that of McKrae infected cells. Our results suggest that the antiapoptotic function of LAT resides within the two sncRNAs, which works independently of its latency-reactivation function and it has suppressive effect on LAT expression in vivo and in vitro.
Collapse
Affiliation(s)
- Jay J. Oh
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Martins RS, Weber J, Poulikidis K, Shetawi AHA, Latif MJ, Razi SS, Lebovics RS, Bhora FY. Gene expression profiles in COVID-19-associated tracheal stenosis indicate persistent anti-viral response and dysregulated retinol metabolism. BMC Res Notes 2024; 17:140. [PMID: 38755665 PMCID: PMC11100031 DOI: 10.1186/s13104-024-06775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19)-associated tracheal stenosis (COATS) may occur as a result of prolonged intubation during COVID-19 infection. We aimed to investigate patterns of gene expression in the tracheal granulation tissue of patients with COATS, leverage gene expression data to identify dysregulated cellular pathways and processes, and discuss potential therapeutic options based on the identified gene expression profiles. METHODS Adult patients (age ≥ 18 years) presenting to clinics for management of severe, recalcitrant COATS were included in this study. RNA sequencing and differential gene expression analysis was performed with transcriptomic data for normal tracheal tissue being used as a control. The top ten most highly upregulated and downregulated genes were identified. For each of these pathologically dysregulated genes, we identified key cellular pathways and processes they are involved in using Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) applied via Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS Two women, aged 36 years and 37 years, were included. The profile of dysregulated genes indicated a cellular response consistent with viral infection (CXCL11, PI15, CCL8, DEFB103A, IFI6, ACOD1, and DEFB4A) and hyperproliferation/hypergranulation (MMP3, CASP14 and HAS1), while downregulated pathways included retinol metabolism (ALDH1A2, RBP1, RBP4, CRABP1 and CRABP2). CONCLUSION Gene expression changes consistent with persistent viral infection and dysregulated retinol metabolism may promote tracheal hypergranulation and hyperproliferation leading to COATS. Given the presence of existing literature highlighting retinoic acid's ability to favorably regulate these genes, improve cell-cell adhesion, and decrease overall disease severity in COVID-19, future studies must evaluate its utility for adjunctive management of COATS in animal models and clinical settings.
Collapse
Affiliation(s)
- Russell Seth Martins
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA.
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network- Central Region, 65 James Street, 08820, Edison, NJ, USA.
| | - Joanna Weber
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Kostantinos Poulikidis
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Al Haitham Al Shetawi
- Division of Surgical Oncology, Department of Surgery, Dyson Center for Cancer Care, Vassar Brothers Medical Center, Nuvance Health, 12601, Poughkeepsie, NY, USA
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Vassar Brothers Medical Center, Nuvance Health, 12601, Poughkeepsie, NY, USA
| | - M Jawad Latif
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Syed Shahzad Razi
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Robert S Lebovics
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Faiz Y Bhora
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA.
- Chief of Thoracic Surgery, Hackensack Meridian Health (HMH) Network- Central Region, Hackensack Meridian School of Medicine, 65 James Street, 08820, Edison, NJ, USA.
| |
Collapse
|
7
|
Samarelli F, Graziano G, Gambacorta N, Graps EA, Leonetti F, Nicolotti O, Altomare CD. Small Molecules for the Treatment of Long-COVID-Related Vascular Damage and Abnormal Blood Clotting: A Patent-Based Appraisal. Viruses 2024; 16:450. [PMID: 38543815 PMCID: PMC10976273 DOI: 10.3390/v16030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
People affected by COVID-19 are exposed to, among others, abnormal clotting and endothelial dysfunction, which may result in deep vein thrombosis, cerebrovascular disorders, and ischemic and non-ischemic heart diseases, to mention a few. Treatments for COVID-19 include antiplatelet (e.g., aspirin, clopidogrel) and anticoagulant agents, but their impact on morbidity and mortality has not been proven. In addition, due to viremia-associated interconnected prothrombotic and proinflammatory events, anti-inflammatory drugs have also been investigated for their ability to mitigate against immune dysregulation due to the cytokine storm. By retrieving patent literature published in the last two years, small molecules patented for long-COVID-related blood clotting and hematological complications are herein examined, along with supporting evidence from preclinical and clinical studies. An overview of the main features and therapeutic potentials of small molecules is provided for the thromboxane receptor antagonist ramatroban, the pan-caspase inhibitor emricasan, and the sodium-hydrogen antiporter 1 (NHE-1) inhibitor rimeporide, as well as natural polyphenolic compounds.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Nicola Gambacorta
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Elisabetta Anna Graps
- ARESS Puglia—Agenzia Regionale Strategica per la Salute ed il Sociale, I-70121 Bari, Italy;
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | | |
Collapse
|
8
|
Gheorghita R, Soldanescu I, Lobiuc A, Caliman Sturdza OA, Filip R, Constantinescu – Bercu A, Dimian M, Mangul S, Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. Front Immunol 2024; 15:1344086. [PMID: 38500880 PMCID: PMC10944866 DOI: 10.3389/fimmu.2024.1344086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.
Collapse
Affiliation(s)
- Roxana Gheorghita
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Iuliana Soldanescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
| | - Andrei Lobiuc
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Olga Adriana Caliman Sturdza
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Roxana Filip
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Suceava Emergency Clinical County Hospital, Suceava, Romania
| | - Adela Constantinescu – Bercu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Institute of Cardiovascular Science, Hemostasis Research Unit, University College London (UCL), London, United Kingdom
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), University of Suceava, Suceava, Romania
- Department of Computer, Electronics and Automation, University of Suceava, Suceava, Romania
| | - Serghei Mangul
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California (USC), Los Angeles, CA, United States
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA, United States
| |
Collapse
|
9
|
Kahrizi MS, Nasiri K, Ebrahimzadeh F, Yaseri AF, Ghodratizadeh S, Gholamrezaei M, Rahat Dahmardeh A, Adili A, Amjidifar R, Hemmatzadeh M, Arabi M, Maghsoudi MR, Mohammadi H. Lymphopenia associated with survivin and its downstream pathway in COVID-19 serving as a potential route in COVID-19 pathogenesis. Adv Med Sci 2024; 69:190-197. [PMID: 38521459 DOI: 10.1016/j.advms.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Starting in 2019, coronavirus disease 2019 (COVID-19) caused an epidemic that was growing rapidly and has harmed millions of people globally. It has been demonstrated that survivin regulates lymphocyte survival, a main route involved in COVID-19 pathogenesis. Survivin belongs to the inhibitor of apoptosis protein (IAP) family, and its primary functions comprise regulating mitosis and inhibiting apoptosis. Since lower survivin expression has been shown to increase the sensitivity of lymphocytes to apoptotic induction, we looked into the function of survivin and its corresponding pathways in COVID-19 pathogenesis. MATERIALS AND METHODS The expression of survivin, X-linked inhibitor of apoptosis protein (XIAP), caspases 3, 7, 9, and poly (ADP-ribose) polymerase (PARP) was evaluated at both mRNA and protein levels in peripheral blood mononuclear cells (PBMCs) derived from healthy donors and patients with severe and moderate COVID-19 by qRT-PCR and Western blotting, respectively. Then, we enforced apoptosis to COVID-19 patient-derived lymphocytes, and the percent was assessed by flow cytometry. RESULTS Survivin and XIAP were less expressed in PBMCs derived from COVID-19 patients as apoptosis inhibitors than PARP, cleaved-PARP, caspase 9, and cleaved caspases 3 and 7, according to the results of real-time PCR and Western blot analysis. Additionally, according to the flow cytometry results, the down-regulation of survivin served as a potential factor in the lymphocyte depletion observed in patients with COVID-19. CONCLUSION The role of survivin and its related pathway was first discovered in the development of COVID-19 and may serve as a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soroush Ghodratizadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Gholamrezaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Rahat Dahmardeh
- Department of Anesthesiology and Critical Care, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran; Senior Adult Oncology Department, Moffitt Cancer Center, University of South, Florida, USA
| | - Rosita Amjidifar
- Department of Microbiology, Islamic Azad University of Iran, Ahar, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Arabi
- Department of Physiology, Pharmacology and Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Maghsoudi
- Faculty of Emergency Medicine & Toxicology, Emergency Department, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Dai X, Zhou L, He X, Hua J, Chen L, Lu Y. Identification of apoptosis-related gene signatures as potential biomarkers for differentiating active from latent tuberculosis via bioinformatics analysis. Front Cell Infect Microbiol 2024; 14:1285493. [PMID: 38312744 PMCID: PMC10834671 DOI: 10.3389/fcimb.2024.1285493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Apoptosis is associated with the pathogenesis of Mycobacterium tuberculosis infection. This study aims to identify apoptosis-related genes as biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Methods The tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623) were downloaded from the Gene Expression Omnibus (GEO) database. The diagnostic biomarkers differentiating ATB from LTBI were identified by combining the data of protein-protein interaction network, differentially expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA), and receiver operating characteristic (ROC) analyses. Machine learning algorithms were employed to validate the diagnostic ability of the biomarkers. Enrichment analysis for biomarkers was established, and potential drugs were predicted. The association between biomarkers and N6-methyladenosine (m6A) or 5-methylated cytosine (m5C) regulators was evaluated. Results Six biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and ATF3 were obtained for differentiating ATB from LTBI. They showed strong diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment analysis demonstrated that the biomarkers were involved in immune and inflammation responses. Furthermore, 24 drugs, including progesterone and emricasan, were predicted. The correlation analysis revealed that biomarkers were positively correlated with most m6A or m5C regulators. Conclusion The six ARGs can serve as effective biomarkers differentiating ATB from LTBI and provide insight into the pathogenesis of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Litian Zhou
- Department of Neurosugery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yingying Lu
- Department of Clinical Laboratory, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
11
|
Kondratov KA, Artamonov AA, Mikhailovskii VY, Velmiskina AA, Mosenko SV, Grigoryev EA, Anisenkova AY, Nikitin YV, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. SARS-CoV-2 Impact on Red Blood Cell Morphology. Biomedicines 2023; 11:2902. [PMID: 38001903 PMCID: PMC10669871 DOI: 10.3390/biomedicines11112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Severe COVID-19 alters the biochemical and morphological characteristics of blood cells in a wide variety of ways. To date, however, the vast majority of research has been devoted to the study of leukocytes, while erythrocyte morphological changes have received significantly less attention. The aim of this research was to identify erythrocyte morphology abnormalities that occur in COVID-19, compare the number of different poikilocyte types, and measure erythrocyte sizes to provide data on size dispersion. Red blood cells obtained from 6 control donors (800-2200 cells per donor) and 5 COVID-19 patients (800-1900 cells per patient) were examined using low-voltage scanning electron microscopy. We did not discover any forms of erythrocyte morphology abnormalities that would be specific to COVID-19. Among COVID-19 patients, we observed an increase in the number of acanthocytes (p = 0.01) and a decrease in the number of spherocytes (p = 0.03). In addition, our research demonstrates that COVID-19 causes an increase in the median (p = 0.004) and interquartile range (p = 0.009) when assessing erythrocyte size. The limitation of our study is a small number of participants.
Collapse
Affiliation(s)
- Kirill A. Kondratov
- City Hospital No. 40, St. Petersburg 197706, Russia
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | | | - Anastasiya A. Velmiskina
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey V. Mosenko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Anna Yu. Anisenkova
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Yuri V. Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Svetlana V. Apalko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Andrey M. Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Sergey G. Scherbak
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
12
|
Wei ZYD, Liang K, Shetty AK. Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. Aging Dis 2023; 14:1492-1510. [PMID: 37163427 PMCID: PMC10529748 DOI: 10.14336/ad.2023.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades human cells by binding to the angiotensin-converting-enzyme-2 (ACE-2) using a spike protein and leads to Coronavirus disease-2019 (COVID-19). COVID-19 primarily causes a respiratory infection that can lead to severe systemic inflammation. It is also common for some patients to develop significant neurological and psychiatric symptoms. The spread of SARS-CoV-2 to the CNS likely occurs through several pathways. Once spread in the CNS, many acute symptoms emerge, and such infections could also transpire into severe neurological complications, including encephalitis or ischemic stroke. After recovery from the acute infection, a significant percentage of patients develop "long COVID," a condition in which several symptoms of COVID-19 persist for prolonged periods. This review aims to discuss acute and chronic neurological problems after SARS-CoV-2 infection. The potential mechanisms by which SARS-CoV-2 enters the CNS and causes neuroinflammation, neuropathological changes observed in post-mortem brains of COVID-19 patients, and cognitive and mood problems in COVID-19 survivors are discussed in the initial part. The later part of the review deliberates the causes of long COVID, approaches for noninvasive tracking of neuroinflammation in long COVID patients, and the potential therapeutic strategies that could ease enduring CNS symptoms observed in long COVID.
Collapse
Affiliation(s)
- Zhuang-Yao D Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
13
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
14
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Foster SL, Dutton AJ, Yerzhan A, March LB, Barry K, Seehus CR, Huang X, Talbot S, Woolf CJ. A Preliminary Study of Mild Heat Stress on Inflammasome Activation in Murine Macrophages. Cells 2023; 12:1189. [PMID: 37190098 PMCID: PMC10137183 DOI: 10.3390/cells12081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Inflammation and mitochondrial-dependent oxidative stress are interrelated processes implicated in multiple neuroinflammatory disorders, including Alzheimer's disease (AD) and depression. Exposure to elevated temperature (hyperthermia) is proposed as a non-pharmacological, anti-inflammatory treatment for these disorders; however, the underlying mechanisms are not fully understood. Here we asked if the inflammasome, a protein complex essential for orchestrating the inflammatory response and linked to mitochondrial stress, might be modulated by elevated temperatures. To test this, in preliminary studies, immortalized bone-marrow-derived murine macrophages (iBMM) were primed with inflammatory stimuli, exposed to a range of temperatures (37-41.5 °C), and examined for markers of inflammasome and mitochondrial activity. We found that exposure to mild heat stress (39 °C for 15 min) rapidly inhibited iBMM inflammasome activity. Furthermore, heat exposure led to decreased ASC speck formation and increased numbers of polarized mitochondria. These results suggest that mild hyperthermia inhibits inflammasome activity in the iBMM, limiting potentially harmful inflammation and mitigating mitochondrial stress. Our findings suggest an additional potential mechanism by which hyperthermia may exert its beneficial effects on inflammatory diseases.
Collapse
Affiliation(s)
- Simmie L. Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Abigail J. Dutton
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adina Yerzhan
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay B. March
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Barry
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Corey R. Seehus
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xudong Huang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Pandit R, Ipinmoroti AO, Crenshaw BJ, Li T, Matthews QL. Canine Coronavirus Infection Modulates the Biogenesis and Composition of Cell-Derived Extracellular Vesicles. Biomedicines 2023; 11:976. [PMID: 36979955 PMCID: PMC10046050 DOI: 10.3390/biomedicines11030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Coronavirus (CoV) has persistently become a global health concern causing various diseases in a wide variety of hosts, including humans, birds, and companion animals. However, the virus-mediated responses in animal hosts have not been studied extensively due to pathogenesis complexity and disease developments. Extracellular vesicles (EVs) are widely explored in viral infections for their intercellular communication, nanocarrier, and immunomodulatory properties. We proposed that coronavirus hijacks the host exosomal pathway and modulates the EV biogenesis, composition, and protein trafficking in the host. In the present study, Crandell-Rees feline kidney (CRFK) cells were infected with canine coronavirus (CCoV) in an exosome-free medium at the multiplicity of infection (MOI) of 400 infectious units (IFU) at various time points. The cell viability was significantly decreased over time, as determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Post-infection EVs were isolated, and transmission electron microscopy (TEM) showed the presence of small EVs (sEVs) after infection. NanoSight particle tracking analysis (NTA) revealed that EV sizes averaged between 100 and 200 nm at both incubation times; however, the mean size of infection-derived EVs was significantly decreased at 48 h when compared to uninfected control EVs. Quantitative analysis of protein levels performed by dot blot scanning showed that the expression levels of ACE-2, annexin-V, flotillin-1, TLR-7, LAMP, TNF-α, caspase-1, caspase-8, and others were altered in EVs after infection. Our findings suggested that coronavirus infection impacts cell viability, modulates EV biogenesis, and alters cargo composition and protein trafficking in the host, which could impact viral progression and disease development. Future experiments with different animal CoVs will provide a detailed understanding of host EV biology in infection pathogenesis and progression. Hence, EVs could offer a diagnostic and therapeutic tool to study virus-mediated host responses that could be extended to study the interspecies jump of animal CoVs to cause infection in humans.
Collapse
Affiliation(s)
- Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ting Li
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
17
|
Functional outcomes in post Covid-19 patients with persistent dyspnea: multidisciplinary approach. Int J Cardiovasc Imaging 2023; 39:1115-1122. [PMID: 36879082 PMCID: PMC9988204 DOI: 10.1007/s10554-023-02819-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Post-acute sequelae of SARS-CoV-2 (PASC) have emerged as a major health issue in patients who have previously been infected with Covid-19 virus. PURPOSE we aimed at the assessment of functional outcomes in post Covid-19 patients with persistent dyspnea using a multidisciplinary approach including clinical assessment, laboratory investigations, exercise ECG, and different echo-Doppler modalities, including left atrial functions. METHODS The current observational randomized controlled study conducted on 60- patients one month after recovery from Covid-19 infection presented with persistent dyspnea compared to 30 healthy volunteers. All participants were subjected to evaluation of dyspnea by different scores, laboratory investigations, stress ECG, and echo-Doppler examination to measure LV dimensions, volumes, systolic and diastolic functions by M-mode, 2D, and tissue Doppler imaging in addition to 2-D speckle tacking LA strain. RESULTS Post Covid-19 patients had persistent elevation of inflammatory markers, low functional capacity (evidenced by a higher NYHA class, m MRC score, PCFS scale) and decreased METs by stress ECG compared to control group. Post Covid-19 patients showed LV diastolic dysfunction and impairment of 2D-STE LA functions compared to control group. We found negative correlations between LA strain with NYHA class, mMRC scale, LAVI, ESR and CRP; meanwhile, there were significant positive correlations between LA strain with exercise duration and METs. CONCLUSION post Covid patients presented with persistent dyspnea demonstrated low functional capacity evidenced by different scores and stress ECG. Moreover, patients with post Covid syndrome showed elevated inflammatory biomarkers, LV diastolic dysfunction in addition to impaired LA strain functions. Impairment of LA strain was closely correlated to different functional scores, inflammatory biomarkers, exercise duration, and METs suggesting that these could to be the possible etiologies for the persistence of post Covid symptoms.
Collapse
|
18
|
Khan SA, Lee TKW. Identifying potential pharmacological targets and molecular pathways of Meliae cortex for COVID-19 therapy. Front Immunol 2023; 14:1128164. [PMID: 36817449 PMCID: PMC9932519 DOI: 10.3389/fimmu.2023.1128164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease-19 (COVID-19), caused by SARS-CoV-2, has contributed to a significant increase in mortality. Proinflammatory cytokine-mediated cytokine release syndrome (CRS) contributes significantly to COVID-19. Meliae cortex has been reported for its several ethnomedical applications in the Chinese Pharmacopoeia. In combination with other traditional Chinese medicines (TCM), the Meliae cortex suppresses coronavirus. Due to its phytoconstituents and anti-inflammatory capabilities, we postulated that the Meliae cortex could be a potential therapeutic for treating COVID-19. The active phytonutrients, molecular targets, and pathways of the Meliae cortex have not been explored yet for COVID-19 therapy. We performed network pharmacology analysis to determine the active phytoconstituents, molecular targets, and pathways of the Meliae cortex for COVID-19 treatment. 15 active phytonutrients of the Meliae cortex and 451 their potential gene targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and SwissTargetPrediction website tool, respectively. 1745 COVID-19-related gene targets were recovered from the GeneCards. 104 intersection gene targets were determined by performing VENNY analysis. Using the DAVID tool, gene ontology (GO) and KEGG pathway enrichment analysis were performed on the intersection gene targets. Using the Cytoscape software, the PPI and MCODE analyses were carried out on the intersection gene targets, which resulted in 41 potential anti-COVID-19 core targets. Molecular docking was performed with AutoDock Vina. The 10 anti-COVID-19 core targets (AKT1, TNF, HSP90AA1, IL-6, mTOR, EGFR, CASP3, HIF1A, MAPK3, and MAPK1), three molecular pathways (the PI3K-Akt signaling pathway, the HIF-1 signaling pathway, and the pathways in cancer) and three active phytonutrients (4,8-dimethoxy-1-vinyl-beta-carboline, Trichilinin D, and Nimbolin B) were identified as molecular targets, molecular pathways, and key active phytonutrients of the Meliae cortex, respectively that significantly contribute to alleviating COVID-19. Molecular docking analysis further corroborated that three Meliae cortex's key active phytonutrients may ameliorate COVID-19 disease by modulating identified targets. Hence, this research offers a solid theoretic foundation for the future development of anti-COVID-19 therapeutics based on the phytonutrients of the Meliae cortex.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| |
Collapse
|
19
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Babazadeh Z. Involvement of NLRP3 Inflammasome in SARS-Cov-2-Induced Multiorgan Dysfunction in Patients with COVID-19: A Review of Molecular Mechanisms. TANAFFOS 2023; 22:40-52. [PMID: 37920322 PMCID: PMC10618576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat protein- 3 (NLRP3) inflammasome is a critical component of the innate immune system. The inflammasome activation is correlated with the COVID- 19 severity. Furthermore, the underlying conditions are accompanied by hyperactivation of NLRP3 inflammasome and poor outcomes. Herein, we presented the involvement of NLRP3 inflammasome in the pathogenies of SARS-CoV-2-induced multiorgan dysfunction and potential therapeutics. Overexpression of NLRP3 inflammasome components and subsequently increased levels of cytokines following viral infection leads to the cytokine storm and indirectly affects the organ functions. Besides, invading host cells via SARS-CoV-2 further activates the NLRP3 inflammasome and induces pyroptosis in immune cells, resulting in the secretion of higher levels of proinflammatory cytokines into the extracellular matrix. These events continued by induction of fibrosis and organ dysfunction following infection with SARS-CoV-2 in critically ill patients. This condition can be observed in individuals with comorbidities (e.g., diabetes, obesity, etc.) due to a primed state of immunity, which can cause severe disease or death in this population. Therefore, understanding the mechanisms underlying host-SARS-CoV-2 interaction may help to clarify the pathophysiology of SARS-CoV-2- induced multiorgan dysfunction and introduce potential therapeutic strategies.
Collapse
Affiliation(s)
- Zahra Babazadeh
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Zheng Q, Lin R, Chen Y, Lv Q, Zhang J, Zhai J, Xu W, Wang W. SARS-CoV-2 induces "cytokine storm" hyperinflammatory responses in RA patients through pyroptosis. Front Immunol 2022; 13:1058884. [PMID: 36532040 PMCID: PMC9751040 DOI: 10.3389/fimmu.2022.1058884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background The coronavirus disease (COVID-19) is a pandemic disease that threatens worldwide public health, and rheumatoid arthritis (RA) is the most common autoimmune disease. COVID-19 and RA are each strong risk factors for the other, but their molecular mechanisms are unclear. This study aims to investigate the biomarkers between COVID-19 and RA from the mechanism of pyroptosis and find effective disease-targeting drugs. Methods We obtained the common gene shared by COVID-19, RA (GSE55235), and pyroptosis using bioinformatics analysis and then did the principal component analysis(PCA). The Co-genes were evaluated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and ClueGO for functional enrichment, the protein-protein interaction (PPI) network was built by STRING, and the k-means machine learning algorithm was employed for cluster analysis. Modular analysis utilizing Cytoscape to identify hub genes, functional enrichment analysis with Metascape and GeneMANIA, and NetworkAnalyst for gene-drug prediction. Network pharmacology analysis was performed to identify target drug-related genes intersecting with COVID-19, RA, and pyroptosis to acquire Co-hub genes and construct transcription factor (TF)-hub genes and miRNA-hub genes networks by NetworkAnalyst. The Co-hub genes were validated using GSE55457 and GSE93272 to acquire the Key gene, and their efficacy was assessed using receiver operating curves (ROC); SPEED2 was then used to determine the upstream pathway. Immune cell infiltration was analyzed using CIBERSORT and validated by the HPA database. Molecular docking, molecular dynamics simulation, and molecular mechanics-generalized born surface area (MM-GBSA) were used to explore and validate drug-gene relationships through computer-aided drug design. Results COVID-19, RA, and pyroptosis-related genes were enriched in pyroptosis and pro-inflammatory pathways(the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex, death-inducing signaling complex, regulation of interleukin production), natural immune pathways (Network map of SARS-CoV-2 signaling pathway, activation of NLRP3 inflammasome by SARS-CoV-2) and COVID-19-and RA-related cytokine storm pathways (IL, nuclear factor-kappa B (NF-κB), TNF signaling pathway and regulation of cytokine-mediated signaling). Of these, CASP1 is the most involved pathway and is closely related to minocycline. YY1, hsa-mir-429, and hsa-mir-34a-5p play an important role in the expression of CASP1. Monocytes are high-caspase-1-expressing sentinel cells. Minocycline can generate a highly stable state for biochemical activity by docking closely with the active region of caspase-1. Conclusions Caspase-1 is a common biomarker for COVID-19, RA, and pyroptosis, and it may be an important mediator of the excessive inflammatory response induced by SARS-CoV-2 in RA patients through pyroptosis. Minocycline may counteract cytokine storm inflammation in patients with COVID-19 combined with RA by inhibiting caspase-1 expression.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Weihong Xu
- Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Weihong Xu, ; Wanming Wang,
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China,*Correspondence: Weihong Xu, ; Wanming Wang,
| |
Collapse
|
22
|
Umesh A, Pranay K, Pandey RC, Gupta MK. Evidence mapping and review of long-COVID and its underlying pathophysiological mechanism. Infection 2022; 50:1053-1066. [PMID: 35489015 PMCID: PMC9055372 DOI: 10.1007/s15010-022-01835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Apart from the global disease burden of acute COVID-19 disease, the health complications arising after recovery have been recognized as a long-COVID or post-COVID-19 syndrome. Evidences of long-COVID symptoms involving various organ systems are rapidly growing in literature. The objective was to perform a rapid review and evidence mapping of systemic complications and symptoms of long-COVID and underlying pathophysiological mechanisms. METHODS Publications reporting clinical trials, observational cohort studies, case-control studies, case-series, meta-analysis, and systematic reviews, focusing on the squeal of the disease, consequences of COVID-19 treatment/hospitalization, long-COVID, chronic COVID syndrome, and post acute COVID-19 were reviewed in detail for the narrative synthesis of frequency, duration, risk factors, and pathophysiology. RESULTS The review highlights that pulmonary, neuro-psychological, and cardiovascular complications are major findings in most epidemiological studies. However, dysfunctional gastrointestinal, endocrine, and metabolic health are recent findings for which underlying pathophysiological mechanisms are poorly understood. Analysis of the clinical trial landscape suggests that more than 50% of the industry-sponsored trials are focused on pulmonary symptoms. In contrast to the epidemiological trends and academic trials, cardiovascular complications are not a focus of industry-sponsored trials, suggestive of the gaps in the research efforts. CONCLUSION The gap in epidemiological trends and academic trials, particularly concerning cardiovascular complications not being a focus of industry-sponsored trials is suggestive of the gaps in research efforts and longer follow-up durations would help identify other long-COVID-related health issues such as reproductive health and fertility.
Collapse
Affiliation(s)
- Anushri Umesh
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Kumar Pranay
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, 800014, India
| | | | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
Zhou X, Ye G, Lv Y, Guo Y, Pan X, Li Y, Shen G, He Y, Lei P. IL-6 drives T cell death to participate in lymphopenia in COVID-19. Int Immunopharmacol 2022; 111:109132. [PMID: 35964413 PMCID: PMC9359506 DOI: 10.1016/j.intimp.2022.109132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/08/2023]
Abstract
Lymphopenia is a common observation in patients with COVID-19. To explore the cause of T cell lymphopenia in the disease, laboratory results of 64 hospitalized COVID-19 patients were retrospectively analyzed and six patients were randomly selected to trace their changes of T lymphocytes and plasma concentration of IL-6 for the course of disease. Results confirmed that the T-cell lymphopenia, especially CD4+ T cell reduction in COVID-19 patients, was a reliable indicator of severity and hospitalization in infected patients. And CD4+ T cell count below 200 cells/μL predicts critical illness in COVID-19 patients. In vitro assay supported that exposure to key contributors (IL-1β, IL-6, TNF-α and IFN-γ) of COVID-19 cytokine storm caused substantial death of activated T cells. Among these contributors, IL-6 level was found to probably reversely correlate with T cell counts in patients. And IL-6 alone was potent to induce T cell reduction by gasderminE-mediated pyroptosis, inferring IL-6 took a part in affecting the function and status of T cells in COVID-19 patients. Intervention of IL-6 mediated T cell pryprotosis may effectively delay disease progression, maintain normal immune status at an early stage of infection.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Wang M, Chang W, Zhang L, Zhang Y. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci 2022; 18:5827-5848. [PMID: 36263178 PMCID: PMC9576507 DOI: 10.7150/ijbs.77561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
The rapid dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health emergency. The host immune response to SARS-CoV-2 plays a key role in COVID-19 pathogenesis. SARS-CoV-2 can induce aberrant and excessive immune responses, leading to cytokine storm syndrome, autoimmunity, lymphopenia, neutrophilia and dysfunction of monocytes and macrophages. Pyroptosis, a proinflammatory form of programmed cell death, acts as a host defense mechanism against infections. Pyroptosis deprives the replicative niche of SARS-CoV-2 by inducing the lysis of infected cells and exposing the virus to extracellular immune attack. Notably, SARS-CoV-2 has evolved sophisticated mechanisms to hijack this cell death mode for its own survival, propagation and shedding. SARS-CoV-2-encoded viral products act to modulate various key components in the pyroptosis pathways, including inflammasomes, caspases and gasdermins. SARS-CoV-2-induced pyroptosis contriubtes to the development of COVID-19-associated immunopathologies through leakage of intracellular contents, disruption of immune system homeostasis or exacerbation of inflammation. Therefore, pyroptosis has emerged as an important mechanism involved in COVID-19 immunopathogenesis. However, the entangled links between pyroptosis and SARS-CoV-2 pathogenesis lack systematic clarification. In this review, we briefly summarize the characteristics of SARS-CoV-2 and COVID-19-related immunopathologies. Moreover, we present an overview of the interplay between SARS-CoV-2 infection and pyroptosis and highlight recent research advances in the understanding of the mechanisms responsible for the implication of the pyroptosis pathways in COVID-19 pathogenesis, which will provide informative inspirations and new directions for further investigation and clinical practice. Finally, we discuss the potential value of pyroptosis as a therapeutic target in COVID-19. An in-depth discussion of the underlying mechanisms of COVID-19 pathogenesis will be conducive to the identification of potential therapeutic targets and the exploration of effective treatment measures aimed at conquering SARS-CoV-2-induced COVID-19.
Collapse
Affiliation(s)
- Man Wang
- ✉ Corresponding author: Man Wang, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China. Tel.: +86-532-82991791; E-mail address:
| | | | | | | |
Collapse
|
25
|
Kurt Y, Özmen Ö. Effects of Vitamin C on the Oral-Nasal Mucosal Damage Caused by Favipiravir in Old and Young Rats. Cureus 2022; 14:e28796. [PMID: 36225521 PMCID: PMC9534223 DOI: 10.7759/cureus.28796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Background Favipiravir was widely used to treat coronavirus disease 2019 (COVID-19) early in the pandemic. Later, many reports began to be published about the side effects of favipiravir on different tissues. However, the side effects of favipiravir on the oral and nasal mucosa remain unknown. This experimental study aimed to evaluate the pathological effects of favipiravir on the oral-nasal mucosa and investigate whether vitamin C (Vit C) reduces these lesions in old and young rats. Methodology A total of 100 rats were used for this study. The rats were administered favipiravir (20 mg/kg and 100 mg/kg) and Vit C (150 mg/kg/day) for 14 days. At the end of the study, rats were euthanatized, and oral-nasal mucosal histopathological changes were evaluated. Nuclear factor kappa-ligand (RANKL) and caspase-3 expressions were immunohistochemically examined. Results Favipiravir caused severe lesions in old rats compared to young, and the severity of the lesions increased with the dosage. Severe hyperemia and erosive-ulcerative lesions were observed in the oral-nasal mucosa. In addition, increased RANKL and caspase-3 expressions were observed in a dose-dependent manner. In both young and old groups, Vit C treatment showed decreased caspase-3 and RANKL expression; a more prominent decrease was seen in young rats. Conclusions This study showed that favipiravir could cause histopathological lesions in the oral and nasal mucosa. However, the administration of Vit C with favipiravir can provide a protective effect against this damage. The curative effect of Vit C was more pronounced in young rats and at low doses.
Collapse
|
26
|
Sampson C, Liang SY. The Tip of the Spear: Emergency Medicine and Missouri's Response to the COVID-19 Pandemic. MISSOURI MEDICINE 2022; 119:432-436. [PMID: 36337989 PMCID: PMC9616458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic provided the specialty of emergency medicine the opportunity to showcase what many knew all along: emergency physicians (EP) are well suited to deal with the unknown and can quickly adapt even with incomplete or limited information and resources. Emergency physicians in Missouri served in integral positions locally, nationally and internationally. Missouri EPs published numerous manuscripts on topics from basic science to clinical care. Device innovation also occurred with the development of protective devices for health care workers. As we approach the three-year mark of the COVID-19 pandemic, the burden of clinical care still weighs heavily on EPs. Each wave of the pandemic has brought challenges and spurred EPs to innovate in new ways. As Michigan EP Brian Zink, MD once said "Anyone, Anything, Anytime". These words correctly sum up emergency medicine. When others hesitated to care for COVID-19 patients, EPs stepped up despite uncertainty and risks to their own health. Emergency medicine has led the way and continues to innovate and push the envelope of emergency care.
Collapse
Affiliation(s)
- Christopher Sampson
- Department of Emergency Medicine, University of Missouri - Columbia School of Medicine, Columbia, Missouri
| | - Stephen Y Liang
- Department of Emergency Medicine and the Division of Infectious Diseases, Department of Medicine at Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
28
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
29
|
Pang APS, Higgins-Chen AT, Comite F, Raica I, Arboleda C, Went H, Mendez T, Schotsaert M, Dwaraka V, Smith R, Levine ME, Ndhlovu LC, Corley MJ. Longitudinal Study of DNA Methylation and Epigenetic Clocks Prior to and Following Test-Confirmed COVID-19 and mRNA Vaccination. Front Genet 2022; 13:819749. [PMID: 35719387 PMCID: PMC9203887 DOI: 10.3389/fgene.2022.819749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 01/01/2023] Open
Abstract
The host epigenetic landscape rapidly changes during SARS-CoV-2 infection, and evidence suggest that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in the blood of 21 participants prior to and following test-confirmed COVID-19 diagnosis at a median time frame of 8.35 weeks; 756 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted p-value < 0.05. These CpGs were enriched in the gene body, and the northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people fewer than 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed that vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those who received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.
Collapse
Affiliation(s)
- Alina P. S. Pang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Albert T. Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| | - Florence Comite
- Comite Center for Precision Medicine & Health, New York, NY, United States
- Lenox Hill Hospital/Northwell, New York, NY, United States
| | - Ioana Raica
- Comite Center for Precision Medicine & Health, New York, NY, United States
| | | | | | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ryan Smith
- TruDiagnostic, Lexington, KY, United States
| | - Morgan E. Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Michael J. Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
30
|
Abstract
Postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or long coronavirus disease (COVID) is an emerging syndrome characterized by multiple persisting or newly emergent symptoms following the acute phase of SARS-CoV-2 infection. For affected patients, these prolonged symptoms can have a relapsing and remitting course and may be associated with disability and frequent health care utilization. Although many symptom-driven treatments are available, management remains challenging and often requires a multidisciplinary approach. This article summarizes the emerging consensus on definitions, epidemiology, and pathophysiology of long COVID and discusses what is understood about prevention, evaluation, and treatment of this syndrome.
Collapse
Affiliation(s)
- Aluko A Hope
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Oregon Health & Science University (OHSU), 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| | - Teresa H Evering
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, 413 East 69th Street, Belfer Research Building, BB-512, New York, NY 10021, USA.
| |
Collapse
|
31
|
Monga S, Fares B, Yashaev R, Melamed D, Kahana M, Fares F, Weizman A, Gavish M. The Effect of Natural-Based Formulation (NBF) on the Response of RAW264.7 Macrophages to LPS as an In Vitro Model of Inflammation. J Fungi (Basel) 2022; 8:jof8030321. [PMID: 35330323 PMCID: PMC8955716 DOI: 10.3390/jof8030321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophages are some of the most important immune cells in the organism and are responsible for creating an inflammatory immune response in order to inhibit the passage of microscopic foreign bodies into the blood stream. Sometimes, their activation can be responsible for chronic inflammatory diseases such as asthma, tuberculosis, hepatitis, sinusitis, inflammatory bowel disease, and viral infections. Prolonged inflammation can damage the organs or may lead to death in serious conditions. In the present study, RAW264.7 macrophages were exposed to lipopolysaccharide (LPS; 20 ng/mL) and simultaneously treated with 20 µg/mL of natural-based formulation (NBF), mushroom–cannabidiol extract). Pro-inflammatory cytokines, chemokines, and other inflammatory markers were analyzed. The elevations in the presence of interleukin-6 (IL-6), cycloxygenase-2 (COX-2), C-C motif ligand-5 (CCL5), and nitrite response, following exposure to LPS, were completely inhibited by NBF administration. IL-1β and tumor necrosis factor alpha (TNF-α) release were inhibited by 3.9-fold and 1.5-fold, respectively. No toxic effect of NBF, as assessed by lactate dehydrogenase (LDH) release, was observed. Treatment of the cells with NBF significantly increased the mRNA levels of TLR2, and TLR4, but not NF-κB. Thus, it appears that the NBF possesses anti-inflammatory and immunomodulatory effects which can attenuate the release of pro-inflammatory markers. NBF may be a candidate for the treatment of acute and chronic inflammatory diseases and deserves further investigation.
Collapse
Affiliation(s)
- Sheelu Monga
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (S.M.); (F.F.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
| | - Basem Fares
- Cannabotech Ltd., 3 Arik Einstein St., Herzliya 4659071, Israel; (B.F.); (D.M.)
| | - Rami Yashaev
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
| | - Dov Melamed
- Cannabotech Ltd., 3 Arik Einstein St., Herzliya 4659071, Israel; (B.F.); (D.M.)
| | - Meygal Kahana
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
| | - Fuad Fares
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (S.M.); (F.F.)
| | - Abraham Weizman
- Sackler Faculty of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel;
- Research Unit, Geha Mental Health Center, Petah Tikva 4910002, Israel
| | - Moshe Gavish
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
- Correspondence:
| |
Collapse
|
32
|
Premeaux TA, Yeung ST, Bukhari Z, Bowler S, Alpan O, Gupta R, Ndhlovu LC. Emerging Insights on Caspases in COVID-19 Pathogenesis, Sequelae, and Directed Therapies. Front Immunol 2022; 13:842740. [PMID: 35265086 PMCID: PMC8899608 DOI: 10.3389/fimmu.2022.842740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a significant global health emergency with new variants in some cases evading current therapies and approved vaccines. COVID-19 presents with a broad spectrum of acute and long-term manifestations. Severe COVID-19 is characterized by dysregulated cytokine release profile, dysfunctional immune responses, and hypercoagulation with a high risk of progression to multi-organ failure and death. Unraveling the fundamental immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and design of more effective therapeutic interventions for individuals at the highest risk of severe outcomes. Caspases are expressed in both immune and non-immune cells and mediate inflammation and cell death, including apoptosis and pyroptosis. Here we review accumulating evidence defining the importance of the expression and activity of caspase family members following SARS-CoV-2 infection and disease. Research suggests SARS-CoV-2 infection is linked to the function of multiple caspases, both mechanistically in vitro as well as in observational studies of individuals with severe COVID-19, which may further the impact on disease severity. We also highlight immunological mechanisms that occur in severe COVID-19 pathology upstream and downstream of activated caspase pathways, including innate recognition receptor signaling, inflammasomes, and other multiprotein complex assembly, inflammatory mediators IL-1β and IL-18, and apoptotic and pyroptotic cell death. Finally, we illuminate discriminate and indiscriminate caspase inhibitors that have been identified for clinical use that could emerge as potential therapeutic interventions that may benefit clinical efforts to prevent or ameliorate severe COVID-19.
Collapse
Affiliation(s)
- Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Stephen T. Yeung
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Zaheer Bukhari
- Department of Pathology, The State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Scott Bowler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Oral Alpan
- Immunopathogenesis Section, Amerimmune, Fairfax, VA, United States
| | - Raavi Gupta
- Department of Pathology, The State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
33
|
Zoran T, Seelbinder B, White PL, Price JS, Kraus S, Kurzai O, Linde J, Häder A, Loeffler C, Grigoleit GU, Einsele H, Panagiotou G, Loeffler J, Schäuble S. Molecular Profiling Reveals Characteristic and Decisive Signatures in Patients after Allogeneic Stem Cell Transplantation Suffering from Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2022; 8:jof8020171. [PMID: 35205926 PMCID: PMC8880021 DOI: 10.3390/jof8020171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Despite available diagnostic tests and recent advances, diagnosis of pulmonary invasive aspergillosis (IPA) remains challenging. We performed a longitudinal case-control pilot study to identify host-specific, novel, and immune-relevant molecular candidates indicating IPA in patients post allogeneic stem cell transplantation (alloSCT). Supported by differential gene expression analysis of six relevant in vitro studies, we conducted RNA sequencing of three alloSCT patients categorized as probable IPA cases and their matched controls without Aspergillus infection (66 samples in total). We additionally performed immunoassay analysis for all patient samples to gain a multi-omics perspective. Profiling analysis suggested LGALS2, MMP1, IL-8, and caspase-3 as potential host molecular candidates indicating IPA in investigated alloSCT patients. MMP1, IL-8, and caspase-3 were evaluated further in alloSCT patients for their potential to differentiate possible IPA cases and patients suffering from COVID-19-associated pulmonary aspergillosis (CAPA) and appropriate control patients. Possible IPA cases showed differences in IL-8 and caspase-3 serum levels compared with matched controls. Furthermore, we observed significant differences in IL-8 and caspase-3 levels among CAPA patients compared with control patients. With our conceptual work, we demonstrate the potential value of considering the human immune response during Aspergillus infection to identify immune-relevant molecular candidates indicating IPA in alloSCT patients. These human host candidates together with already established fungal biomarkers might improve the accuracy of IPA diagnostic tools.
Collapse
Affiliation(s)
- Tamara Zoran
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
| | - Philip Lewis White
- Public Health Wales, Microbiology Cardiff, UHW, Cardiff CF14 4XW, UK; (P.L.W.); (J.S.P.)
| | - Jessica Sarah Price
- Public Health Wales, Microbiology Cardiff, UHW, Cardiff CF14 4XW, UK; (P.L.W.); (J.S.P.)
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (O.K.); (A.H.)
- Institute for Hygiene and Microbiology, Julius Maximilians University of Wuerzburg, Josef-Schneider-Straße 2/E1, 97080 Wuerzburg, Germany
| | - Joerg Linde
- Friedrich—Loeffler Institute, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany;
| | - Antje Häder
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (O.K.); (A.H.)
| | - Claudia Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Goetz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (T.Z.); (S.K.); (C.L.); (G.U.G.); (H.E.)
- Correspondence: (J.L.); (S.S.)
| | - Sascha Schäuble
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, 07745 Jena, Germany; (B.S.); (G.P.)
- Correspondence: (J.L.); (S.S.)
| |
Collapse
|
34
|
Zhu L, Li X, Xu F, Yin Z, Jin J, Liu Z, Qi H, Shuai J. Network modeling-based identification of the switching targets between pyroptosis and secondary pyroptosis. CHAOS, SOLITONS, AND FRACTALS 2022; 155:111724. [PMID: 36570873 PMCID: PMC9759288 DOI: 10.1016/j.chaos.2021.111724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 06/17/2023]
Abstract
The newly identified cell death type, pyroptosis plays crucial roles in various diseases. Most recently, mounting evidence accumulates that pyroptotic signaling is highly correlated with coronavirus disease 2019 (COVID-19). Thus, understanding the induction of the pyroptotic signaling and dissecting the detail molecular control mechanisms are urgently needed. Based on recent experimental studies, a core regulatory model of the pyroptotic signaling is constructed to investigate the intricate crosstalk dynamics between the two cell death types, i.e., pyroptosis and secondary pyroptosis. The model well reproduces the experimental observations under different conditions. Sensitivity analysis determines that only the expression level of caspase-1 or GSDMD has the potential to individually change death modes. The decrease of caspase-1 or GSDMD level switches cell death from pyroptosis to secondary pyroptosis. Besides, eight biochemical reactions are identified that can efficiently switch death modes. While from the viewpoint of bifurcation analysis, the expression level of caspase-3 is further identified and twelve biochemical reactions are obtained. The coexistence of pyroptosis and secondary pyroptosis is predicted to be observed not only within the bistable range, but also within proper monostable range, presenting two potential different control mechanisms. Combined with the landscape theory, we further explore the stochastic dynamic and global stability of the pyroptotic system, accurately quantifying how each component mediates the individual occurrence probability of pyroptosis and secondary pyroptosis. Overall, this study sheds new light on the intricate crosstalk of the pyroptotic signaling and uncovers the regulatory mechanisms of various stable state transitions, providing potential clues to guide the development for prevention and treatment of pyroptosis-related diseases.
Collapse
Affiliation(s)
- Ligang Zhu
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Xiang Li
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
| | - Fei Xu
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhiyong Yin
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Jun Jin
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhilong Liu
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
| | - Jianwei Shuai
- Department of Physics, and Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
35
|
Plassmeyer M, Alpan O, Corley MJ, Premeaux TA, Lillard K, Coatney P, Vaziri T, Michalsky S, Pang APS, Bukhari Z, Yeung ST, Evering TH, Naughton G, Latterich M, Mudd P, Spada A, Rindone N, Loizou D, Ulrik Sønder S, Ndhlovu LC, Gupta R. Caspases and therapeutic potential of caspase inhibitors in moderate-severe SARS-CoV-2 infection and long COVID. Allergy 2022; 77:118-129. [PMID: 33993490 PMCID: PMC8222863 DOI: 10.1111/all.14907] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 can present with lymphopenia and extraordinary complex multiorgan pathologies that can trigger long-term sequela. AIMS Given that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease. MATERIALS & METHODS We assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subject presenting with various comorbid conditions served as controls. RESULTS Single-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells, and eosinophils compared with controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared with unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed upregulated caspase-1activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7levels in red blood cells from COVID-19 patients compared with controls that was reduced following caspase inhibition. DISCUSSION Our preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed. CONCLUSION Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.
Collapse
Affiliation(s)
| | | | - Michael J. Corley
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Thomas A. Premeaux
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | | | | | | | | | - Alina P. S. Pang
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Zaheer Bukhari
- S.U.N.Y. Downstate Health Sciences University Brooklyn NY USA
| | - Stephen T. Yeung
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Teresa H. Evering
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | | | | | - Philip Mudd
- Department of Emergency Medicine Washington University School of Medicine Saint Louis MO USA
| | | | | | | | | | - Lishomwa C. Ndhlovu
- Department of Medicine Division of Infectious Diseases Weill Cornell Medicine New York City NY USA
| | - Raavi Gupta
- S.U.N.Y. Downstate Health Sciences University Brooklyn NY USA
| |
Collapse
|
36
|
The roles of cellular protease interactions in viral infections and programmed cell death: a lesson learned from the SARS-CoV-2 outbreak and COVID-19 pandemic. Pharmacol Rep 2022; 74:1149-1165. [PMID: 35997950 PMCID: PMC9395814 DOI: 10.1007/s43440-022-00394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
The unprecedented pandemic of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to COVID-19, is threatening global health. Over the last 2 years, we have witnessed rapid progress in research focusing on developing new antiviral vaccines and drugs, as well as in academic and clinical efforts to understand the biology and pathology of COVID-19. The roles of proteases among master regulators of SARS-CoV-2 invasion and replication and their pivotal roles in host defence against this pathogen, including programmed cell death, have not been well established. Our understanding of protease function in health and disease has increased considerably over the last two decades, with caspases, matrix metalloproteases, and transmembrane serine proteases representing the most prominent examples. Therefore, during the COVID-19 pandemic, these enzymes have been investigated as potential molecular targets for therapeutic interventions. Proteases that are responsible for SARS-CoV-2 cell entry and replication, such as TMPRSS2, ACE2 or cathepsins, are screened with inhibitor libraries to discover lead structures for further drug design that would prevent virus multiplication. On the other hand, proteases that orchestrate programmed cell death can also be harnessed to enhance the desired demise of infected cells through apoptosis or to attenuate highly inflammatory lytic cell death that leads to undesired cytokine storms, a major hallmark of severe COVID-19. Given the prominent role of proteases in SARS-CoV-2-induced cell death, we discuss the individual roles of these enzymes and their catalytic interactions in the pathology of COVID-19 in this article. We provide a rationale for targeting proteases participating in cell death as potential COVID-19 treatments and identify knowledge gaps that might be investigated to better understand the mechanism underlying SARS-CoV-2-induced cell death.
Collapse
|
37
|
Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10:cells10092406. [PMID: 34572056 PMCID: PMC8469435 DOI: 10.3390/cells10092406] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are key cells of the innate immune system. It is now understood that this leukocyte population is diverse in both the basal composition and functional plasticity. Underlying this plasticity is a post-translational framework for rapidly achieving early activation states, but also a transcriptional capacity that is becoming increasingly recognized by immunologists. Growing interest in the contribution of neutrophils to health and disease has resulted in more efforts to describe their transcriptional activity. Whilst initial efforts focused predominantly on understanding the existing biology, investigations with advanced methods such as single cell RNA sequencing to understand interactions of the entire immune system are revealing higher flexibility in neutrophil transcription than previously thought possible and multiple transition states. It is now apparent that neutrophils utilise many forms of RNA in the regulation of their function. This review collates current knowledge on the nuclei structure and gene expression activity of human neutrophils across homeostasis and disease, before highlighting knowledge gaps that are research priority areas.
Collapse
|
38
|
Duncan-Lowey JK, Chowdhary V, Dunne DW. Coronavirus Disease 2019 in a Patient With a Systemic Autoinflammatory Syndrome due to an NLRC4 Inflammasomopathy. Open Forum Infect Dis 2021; 8:ofab362. [PMID: 34377730 PMCID: PMC8339282 DOI: 10.1093/ofid/ofab362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The effect of autoinflammatory diseases on severe acute respiratory syndrome coronavirus 2 infection remains unknown. We report a case of coronavirus disease 2019 (COVID-19) in a patient with autoinflammation with infantile enterocolitis with inflammatory flares due to a mutation in the inflammasome component NLRC4. This case highlights the role of immunosuppression in patients with autoinflammation with COVID-19.
Collapse
Affiliation(s)
- Jeffrey K Duncan-Lowey
- Section of Infectious Diseases, Department of Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Yale MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vaidehi Chowdhary
- Section of Rheumatology, Department of Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dana W Dunne
- Section of Infectious Diseases, Department of Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Inflammatory Response in COVID-19 Patients Resulting from the Interaction of the Inflammasome and SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22157914. [PMID: 34360684 PMCID: PMC8348456 DOI: 10.3390/ijms22157914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) began at the end of 2019. COVID-19 is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patients with COVID-19 may exhibit poor clinical outcomes. Some patients with severe COVID-19 experience cytokine release syndrome (CRS) or a cytokine storm—elevated levels of hyperactivated immune cells—and circulating pro-inflammatory cytokines, including interleukin (IL)-1β and IL-18. This severe inflammatory response can lead to organ damage/failure and even death. The inflammasome is an intracellular immune complex that is responsible for the secretion of IL-1β and IL-18 in various human diseases. Recently, there has been a growing number of studies revealing a link between the inflammasome and COVID-19. Therefore, this article summarizes the current literature regarding the inflammasome complex and COVID-19.
Collapse
|