1
|
Jian N, Yu L, Ma L, Zheng B, Huang W. BCG therapy in bladder cancer and its tumor microenvironment interactions. Clin Microbiol Rev 2025:e0021224. [PMID: 40111053 DOI: 10.1128/cmr.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYBacillus Calmette-Guérin (BCG) has been the standard treatment for non-muscle-invasive bladder cancer for over 30 years. Despite its proven efficacy, challenges persist, including unclear mechanisms of action, resistance in 30%-50% of patients, and significant side effects. This review presents an updated and balanced discussion of the antitumor mechanisms of BCG, focusing on its direct effects on bladder cancer and its interactions with various cell types within the bladder tumor microenvironment. Notably, recent research on the interactions between BCG and the bladder microbiome is also incorporated. We further summarize and analyze the latest preclinical and clinical studies regarding both intrinsic and adaptive resistance to BCG in bladder cancer. Based on the current understanding of BCG's therapeutic principles and resistance mechanisms, we systematically explore strategies to improve BCG-based tumor immunotherapy. These include the development of recombinant BCG, combination therapy with different drugs, optimization of therapeutic regimens and management, and the exploration of new approaches by targeting changes in the bladder microbiota and its metabolites. These measures aim to effectively address the BCG resistance in bladder cancer, reduce its toxicity, and ultimately enhance the clinical anti-tumor efficacy. Bacterial therapy, represented by genetically engineered oncolytic bacteria, has gradually emerged in the field of cancer treatment in recent years. As the only bacterial drug successfully approved for oncology use, BCG has provided decades of clinical experience. By consolidating lessons from BCG's successes and limitations, we hope to provide valuable insights for the development and application of bacterial therapies in cancer treatment.
Collapse
Affiliation(s)
- Ni Jian
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Ma
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Binbin Zheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
2
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Wu J, Luo FL, Xie Y, Xiong H, Gao Y, Liu G, Zhang XL. EST12 regulates Myc expression and enhances anti-mycobacterial inflammatory response via RACK1-JNK-AP1-Myc immune pathway. Front Immunol 2022; 13:943174. [PMID: 36003390 PMCID: PMC9393728 DOI: 10.3389/fimmu.2022.943174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
c-Myc (Myc) is a well-known transcription factor that regulates many essential cellular processes. Myc has been implicated in regulating anti-mycobacterial responses. However, its precise mechanism in modulating mycobacterial immunity remains elusive. Here, we found that a secreted Rv1579c (early secreted target with molecular weight 12 kDa, named EST12) protein, encoded by virulent Mycobacterium tuberculosis (M.tb) H37Rv region of deletion (RD)3, induces early expression and late degradation of Myc protein. Interestingly, EST12-induced Myc was further processed by K48 ubiquitin proteasome degradation in E3 ubiquitin ligase FBW7 dependent manner. EST12 protein activates JNK-AP1-Myc signaling pathway, promotes Myc binding to the promoters of IL-6, TNF-α and iNOS, then induces the expression of pro-inflammatory cytokines (IL-6 and TNF-α)/inducible nitric oxide synthase (iNOS)/nitric oxide (NO) to increase mycobacterial clearance in a RACK1 dependent manner, and these effects are impaired by both Myc and JNK inhibitors. Macrophages infected with EST12-deficiency strain (H37RvΔEST12) displayed less production of iNOS, IL-6 and TNF-α. In conclusion, EST12 regulates Myc expression and enhances anti-mycobacterial inflammatory response via RACK1-JNK-AP1-Myc immune pathway. Our finding provides new insights into M.tb-induced immunity through Myc.
Collapse
Affiliation(s)
- Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Feng-Ling Luo
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yadong Gao
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guanghui Liu
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism and Medical Research Institute, Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
4
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
5
|
Zhang L, Akdis CA. The past, present, and future of allergic diseases in China. Allergy 2022; 77:354-356. [PMID: 34995371 DOI: 10.1111/all.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing Tongren HospitalCapital Medical University Beijing China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|