1
|
Maluin SM, Osman K, Jaffar FHF, Ibrahim SF. Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Front Physiol 2021; 12:732420. [PMID: 34630149 PMCID: PMC8497974 DOI: 10.3389/fphys.2021.732420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Exposure to radiofrequency electromagnetic radiation (RF-EMR) from various wireless devices has increased dramatically with the advancement of technology. One of the most vulnerable organs to the RF-EMR is the testes. This is due to the fact that testicular tissues are more susceptible to oxidative stress due to a high rate of cell division and mitochondrial oxygen consumption. As a result of extensive cell proliferation, replication errors occur, resulting in DNA fragmentation in the sperm. While high oxygen consumption increases the level of oxidative phosphorylation by-products (free radicals) in the mitochondria. Furthermore, due to its inability to effectively dissipate excess heat, testes are also susceptible to thermal effects from RF-EMR exposure. As a result, people are concerned about its impact on male reproductive function. The aim of this article was to conduct a review of literature on the effects of RF-EMR emitted by wireless devices on male reproductive hormones in experimental animals and humans. According to the findings of the studies, RF-EMR emitted by mobile phones and Wi-Fi devices can cause testosterone reduction. However, the effect on gonadotrophic hormones (follicle-stimulating hormone and luteinizing hormone) is inconclusive. These findings were influenced by several factors, which can influence energy absorption and the biological effect of RF-EMR. The effect of RF-EMR in the majority of animal and human studies appeared to be related to the duration of mobile phone use. Thus, limiting the use of wireless devices is recommended.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia (USIM), Nilai, Malaysia
| | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | | | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Özdemir E, Çömelekoğlu Ü, Degirmenci E, Bayrak G, Yildirim M, Ergenoglu T, Coşkun Yılmaz B, Korunur Engiz B, Yalin S, Koyuncu DD, Ozbay E. The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve. Cutan Ocul Toxicol 2021; 40:198-206. [PMID: 33653184 DOI: 10.1080/15569527.2021.1895825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Rapid development in mobile phone technologies increase the average mobile phone usage duration. This increase also triggers exposure to radiofrequency radiation (RF), which is a risk factor for the health. In this study, it was aimed to investigate the effect of mobile phone working with LTE-Advanced Pro (4.5 G) mobile network on the optic nerve, which is responsible for the transmission of visual information. MATERIAL AND METHODS Thirty-two rats divided into two groups as control (no RF, sham exposure) and experimental (RF exposure using a mobile phone with LTE-Advanced Pro network; 2 hours/day, 6 weeks). The visual evoked potential (VEP) was recorded and determined amplitudes and latencies of VEP waves. Optic nerve malondialdehyde level, catalase and superoxide dismutase activities were determined. Furthermore, ultrastructural and morphometric changes of optic nerve were evaluated. RESULTS In VEP recordings, the mean VEP amplitudes of experimental group were significantly lower than control group. In ultrastructural evaluation, myelinated nerve fibres and glial cells were observed in normal histologic appearance both in sham and experimental group. However, by performing morphometric analysis, in the experimental group, axonal diameter and myelin thickness were shown to be lower and the G-ratio was higher than in the sham group. In the experimental group, malondialdehyde level was significantly higher and superoxide dismutase and catalase activities were significantly lower than sham group. There was a high correlation between VEP wave amplitudes and oxidative stress markers. CONCLUSION Findings obtained in this study support optic nerve damage. These results point out an important risk that may decrease the quality of life.
Collapse
Affiliation(s)
- Erkin Özdemir
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Evren Degirmenci
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Gülsen Bayrak
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Metin Yildirim
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Tolgay Ergenoglu
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Banu Coşkun Yılmaz
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Begüm Korunur Engiz
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Samsun Ondokuz Mayıs University, Samsun, Turkey
| | - Serap Yalin
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Dilan Deniz Koyuncu
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Erkan Ozbay
- Vocational School of Health Service, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
3
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
4
|
Altun G, Deniz ÖG, Yurt KK, Davis D, Kaplan S. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. ENVIRONMENTAL RESEARCH 2018; 167:700-707. [PMID: 29884548 DOI: 10.1016/j.envres.2018.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed. In addition, the present review also evaluates metabolomic effects of GSM-modulated EMFs on the male and female reproductive systems in recent human and animal studies. In this context, experimental and epidemiological studies which examine the impact of mobile phone radiation on the processes of oogenesis and spermatogenesis are examined in line with current approaches.
Collapse
Affiliation(s)
- Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Environmental Health Trust, 7100 N Rachel Way Unit 6 Eagles Rest, Teton Village, WY 83025, United States
| | - Devra Davis
- Hadassah Medical School, Hebrew University, Jerusalem, Isreal and Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Environmental Health Trust, 7100 N Rachel Way Unit 6 Eagles Rest, Teton Village, WY 83025, United States
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
5
|
Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S, Davis DL. Proteomic analysis of continuous 900-MHz radiofrequency electromagnetic field exposure in testicular tissue: a rat model of human cell phone exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13666-13673. [PMID: 28397118 DOI: 10.1007/s11356-017-8882-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Although cell phones have been used worldwide, some adverse and toxic effects were reported for this communication technology apparatus. To analyze in vivo effects of exposure to radiofrequency-electromagnetic field (RF-EMF) on protein expression in rat testicular proteome, 20 Sprague-Dawley rats were exposed to 900 MHz RF-EMF for 0, 1, 2, or 4 h/day for 30 consecutive days. Protein content of rat testes was separated by high-resolution two-dimensional electrophoresis using immobilized pH gradient (pI 4-7, 7 cm) and 12% acrylamide and identified by MALDI-TOF/TOF-MS. Two protein spots were found differentially overexpressed (P < 0.05) in intensity and volume with induction factors 1.7 times greater after RF-EMF exposure. After 4 h of daily exposure for 30 consecutive days, ATP synthase beta subunit (ASBS) and hypoxia up-regulated protein 1 precursor (HYOU1) were found to be significantly up-regulated. These proteins affect signaling pathways in rat testes and spermatogenesis and play a critical role in protein folding and secretion in the endoplasmic reticulum. Our results indicate that exposure to RF-EMF produces increases in testicular proteins in adults that are related to carcinogenic risk and reproductive damage. In light of the widespread practice of men carrying phones in their pockets near their gonads, where exposures can exceed as-tested guidelines, further study of these effects should be a high priority.
Collapse
Affiliation(s)
- Masood Sepehrimanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Po. Box: 17935-1311, Shiraz, Iran.
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Nasrin Kazemipour
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Saeb
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
6
|
Evaluation of the potential of mobile phone specific electromagnetic fields (UMTS) to produce micronuclei in human glioblastoma cell lines. Toxicol In Vitro 2017; 40:264-271. [DOI: 10.1016/j.tiv.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
|
7
|
Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating. Appl Environ Microbiol 2016; 82:6233-6246. [PMID: 27520819 DOI: 10.1128/aem.02020-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. IMPORTANCE The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over 30 h in a commercial microwave digestor. Genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. These findings serve as a platform for future studies with mesophiles in order to better understand the response of microorganisms to microwave radiation.
Collapse
|
8
|
Cao H, Qin F, Liu X, Wang J, Cao Y, Tong J, Zhao H. Circadian rhythmicity of antioxidant markers in rats exposed to 1.8 GHz radiofrequency fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:2071-87. [PMID: 25685954 PMCID: PMC4344711 DOI: 10.3390/ijerph120202071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022]
Abstract
Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. Methods: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 μW/cm2 power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. Results: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. Conclusion: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity.
Collapse
Affiliation(s)
- Honglong Cao
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| | - Fenju Qin
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xueguan Liu
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| | - Jiajun Wang
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| | - Yi Cao
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| | - Heming Zhao
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| |
Collapse
|