1
|
Kiani M, Mehranjani MS, Shariatzadeh MA. Myoinositol improves sperm parameters in diabetic rats by reducing oxidative stress and regulating apoptosis-related genes. J Mol Histol 2025; 56:165. [PMID: 40397159 DOI: 10.1007/s10735-025-10451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/03/2025] [Indexed: 05/22/2025]
Abstract
Diabetes disrupts spermatogenesis and leads to low-quality sperm by causing oxidative stress, inducing apoptosis and reducing testosterone level. Myoinositol has antiglycemic, antioxidant, anti-apoptotic, and testosterone-regulating properties. This study aimed to evaluate the potential of myoinositol in improving sperm production and sperm quality in diabetic rats. Eighteen rats were divided into three groups (n = 6 per group): control, diabetic (Streptozotocin + Nicotinamide), and diabetic + myoinositol supplementation (300 mg/kg, for 56 days). Sperm parameters, including count, total motility, viability, and morphology, were evaluated. Additionally, several biochemical and molecular markers were measured including serum malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAC), testosterone, Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), and Bax/Bcl2 gene expression ratio, Bax and Bcl2 protein expression, germinal epithelium apoptosis. In the diabetic group, sperm count, viability, and normal morphology significantly decreased, along with lower levels of SOD, TAC, testosterone, FSH, and LH. Conversely, MDA levels and the Bax/Bcl2 gene ratio significantly increased compared to the control group. In the diabetic + myoinositol group, sperm count, viability, morphology, and motility significantly improved (P < 0.001), as did TAC, testosterone, and FSH levels (P < 0.001), with a significant increase in LH levels (P < 0.05). Additionally, MDA levels (P < 0.01) and the Bax/Bcl2 gene ratio (P < 0.05) were significantly reduced compared to the diabetic group. This study showed that diabetes impairs sperm quality, antioxidant capacity, and hormones while increasing oxidative stress and apoptosis. Myoinositol improves sperm parameters, boosts antioxidants, and reduces apoptosis, suggesting its therapeutic potential for diabetes-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Mina Kiani
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| | | | | |
Collapse
|
2
|
Attia HG, Hamouda MA, Alasmari S, El-Telbany DF, Alamri ZZ, Qahl SH, Alfaifi MY, Al-Sawahli MM, Abd El Wahed S. Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field. Int J Nanomedicine 2024; 19:9317-9332. [PMID: 39282575 PMCID: PMC11401528 DOI: 10.2147/ijn.s453689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/22/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose : Polyvinyl alcohol-capped silver nanostructures (cAgNSs) were investigated in order to enhance the cytotoxicity, pro-apoptotic, and oxidant patterns of in human laryngeal carcinoma Hep-2 cells by employing a 50 mT electromagnetic field (LEMF) for 30 min. Methods Wet chemical reduction was used to synthesize the cAgNSs, and after they had been capped with polyvinyl alcohol, they were specifically examined for particle size analysis and structural morphology. To visualize how the silver may attach to the protein targets, a molecular docking study was conducted. Estimation of cytotoxicity, cell cycle progression supported by mRNA expression of three apoptotic-promoting genes and one apoptotic-resisting. Results Particle size analysis results were a mean particle size of 157.3±0.5 nm, zeta potential value of -29.6 mV±1.5 mV, and polydispersity index of 0.31±0.05. Significantly reduction of IC50 against Hep-2 cells by around 6-fold was concluded. Also, we obtained suppression of the proliferation of Hep-2 cells, especially in the G0/G1 and S phases. Significant enhanced mRNA expression revealed enhanced induced CASP3, p53, and Beclin-1 mediated pro-apoptosis and induced NF-κB mediated autophagy in Hep-2 cells. Augmented levels of GR, ROS and MDA as oxidative stress biomarkers were also obtained. HE staining of Hep-2 cells exposed to cAgNSs and LEMF confirmed the enhanced apoptotic potential comparatively. Conclusion By conclusion, the developed nano-sized structures with the aid of extremely-low frequency electromagnetic field were successful to fortify the anti-cancer profile of cAgNSs in Hep-2 cells.
Collapse
Affiliation(s)
- Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mai Abdelhalim Hamouda
- Department of Oral Pathology, Faculty of Dentistry, King Salman International University, El-Tur, Egypt
| | - Saeed Alasmari
- Department of Biology, College of Science and Arts, Najran University, Najran 1988, Saudi Arabia
| | - Dalia F El-Telbany
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Zaenah Zuhair Alamri
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Safa H Qahl
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Sara Abd El Wahed
- Department of Oral Pathology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
3
|
Kammoun AK, Hegazy MA, Khedr A, Awan ZA, Khayat MT, Al-Sawahli MM. Etodolac Fortified Sodium Deoxycholate Stabilized Zein Nanoplatforms for Augmented Repositioning Profile in Human Hepatocellular Carcinoma: Assessment of Bioaccessibility, Anti-Proliferation, Pro-Apoptosis and Oxidant Potentials in HepG2 Cells. Pharmaceuticals (Basel) 2022; 15:916. [PMID: 35893740 PMCID: PMC9331642 DOI: 10.3390/ph15080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
This work aimed to enhance the purposing profile of Etodolac (ETD) in Human Hepatocellular Carcinoma (HCC) HepG2 cells using sodium deoxycholate stabilized zein nanospheres (ETD-SDZN NSs). ETD-SDZN NSs were formulated using the nan-precipitation method and were characterized, in particular, in terms of mean particle size, zeta potential, encapsulation efficiency, colloidal stability and bioaccessibility. Estimations of cytotoxicity, cellular uptake, cell cycle progression, Annexin-V staining, mRNA expression of apoptotic genes and oxidative stress evaluations were conducted. The ETD-SDZN NSs selected formula obtained an average particle size of 113.6 ± 7.4 nm, a zeta potential value of 32.7 ± 2.3 mV, an encapsulation efficiency of 93.3 ± 5.2%, enhanced bioaccessibility and significantly reduced IC50 against HepG2 cells, by approximately 13 times. There was also enhanced cellular uptake, accumulation in G2-M phase and elevated percentage cells in pre-G1 phase, significant elevated mRNA expression of P53, significant reduced expression of Cyclin-dependent kinase 1 (CDK1) and Cyclooxygenase-2 (COX-2) with enhanced oxidative stress by reducing glutathione reductase (GR) level, ameliorated reactive oxygen species (ROS) generation and lipid peroxidation outputs. ETD-SDZN NSs obtained a supreme cell death-inducing profile toward HepG2 cells compared to free ETD. The method of formulation was successful in acquiring the promising profile of ETD in HCC as a therapeutic molecule due to ameliorated cellular uptake, proapoptotic and oxidant potentials.
Collapse
Affiliation(s)
- Ahmed K. Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (A.K.K.); (A.K.); (M.T.K.)
| | - Maha A. Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (A.K.K.); (A.K.); (M.T.K.)
| | - Zuhier Ahmed Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (A.K.K.); (A.K.); (M.T.K.)
| | | |
Collapse
|
4
|
Liu P, Zhu J, Yuan G, Li D, Wen Y, Huang S, Lv Z, Guo Y, Cheng J. The effects of selenium on GPX4-mediated lipid peroxidation and apoptosis in germ cells. J Appl Toxicol 2021; 42:1016-1028. [PMID: 34970773 DOI: 10.1002/jat.4273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence suggests that selenium plays an essential role in sperm maturation. However, the specific signaling pathway by which selenium exerts effect has not been elucidated. To evaluate the effect of selenium on GPX4-mediated lipid peroxidation and apoptosis in germ cells, selenium deficiency was modeled by culturing GC2-spd cells in serum-free medium. Treatment with 0.5-μM sodium selenite (NaSe) or 5.0-μM selenomethionine (SeMet) significantly improved the proliferation rate and GPX4 protein expression after selenium deficiency. Moreover, NaSe and SeMet decreased the MDA content and lipid peroxidation. When adenovirus was used to knockdown the expression of the GPX4 gene (shRNA-GPX4), the early apoptosis rate of the shRNA-GPX4 cells was significantly higher than that of the EGFP cells. Increased expression of Caspase3 and Bax, as well as MDA content were observed in the shRNA-GPX4 cells compared with EGFP cells. In further, overexpression of the GPX4 gene (ORF-GPX4) cells exhibited increased cell proliferation and decreased MDA content. However, there was no significant difference in 12/15-lox expression both in ORF-GPX4 cells and shRNA-GPX4 cells. Conclusively, GPX4 was involved in the regulation of lipid peroxidation and apoptosis in GC2-spd cells. Selenium played a role in promoting cell proliferation by mediating GPX4. The regulation of GPX4 may occur independently of 12/15-Lox. These findings confirmed the effect of selenium on spermatogenesis and offered a potential target for treating abnormal semen quality in men.
Collapse
Affiliation(s)
- Peiyi Liu
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jiahui Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China.,Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Di Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yinsheng Guo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Tian M, Li LN, Zheng RR, Yang L, Wang ZT. Advances on hormone-like activity of Panax ginseng and ginsenosides. Chin J Nat Med 2021; 18:526-535. [PMID: 32616193 DOI: 10.1016/s1875-5364(20)30063-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Traditional Chinese medicine (TCM) has been paid much attentions due to the prevention and treatment of steroid hormone disorders. Ginseng, the root of Panax ginseng C. A. Meyer (Araliaceae), is one of the most valuable herbs in complementary and alternative medicines around the world. A series of dammarane triterpenoid saponins, also known as phytosteroids, were reported as the primary ingredients of Ginseng, and indicated broad spectral pharmacological actions, including anti-cancer, anti-inflammation and anti-fatigue. The skeletons of the dammarane triterpenoid aglycone are structurally similar to the steroid hormones. Both in vitro and in vivo studies showed that Ginseng and its active ingredients have beneficial hormone-like role in hormonal disorders. This review thus summarizes the structural similarities between hormones and dammarane ginsenosides and integrates the analogous effect of Ginseng and ginsenosides on prevention and treatment of hormonal disorders published in recent twenty years (1998-2018). The review may provide convenience for anticipate structure-function relationship between saponins structure and hormone-like effect.
Collapse
Affiliation(s)
- Mei Tian
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lin-Nan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Rong Zheng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Çıkla-Süzgün P, Küçükgüzel ŞG. Recent Advances in Apoptosis: THE Role of Hydrazones. Mini Rev Med Chem 2019; 19:1427-1442. [PMID: 30968776 DOI: 10.2174/1389557519666190410125910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/22/2023]
Abstract
The process of programmed cell death in higher eukaryotes (apoptosis), is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered as a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Apoptosis seems to play an important key role in the progression of several human diseases like Alzheimer's disease, Parkinson's disease and many types of cancer. Promotion of apoptosis may be a good approach for the prevention of cancer cell proliferation. In early studies, antitumor compounds have been found to induce the apoptotic process in tumor cells. On the other hand, several hydrazones were reported to have lower toxicity than hydrazides due to the blockage of -NH2 group. Therefore, the design of hydrazones that activate and promote apoptosis is an attractive strategy for the discovery and development of potential anticancer agents. The aim of this review is to provide a general overview of current knowledge and the connection between apoptosis and hydrazone. It is also the guide for the apoptotic activities of new hydrazone derivatives.
Collapse
Affiliation(s)
- Pelin Çıkla-Süzgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydapaşa, 34668, İstanbul, Turkey
| | - Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydapaşa, 34668, İstanbul, Turkey
| |
Collapse
|
7
|
Lei B, Xie L, Zhang S, Lv D, Shu F, Deng Y. UBE2W down-regulation promotes cell apoptosis and correlates with hypospermatogenesis. Andrologia 2019; 52:e13474. [PMID: 31710394 DOI: 10.1111/and.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin conjugating enzyme (E2) is crucial for mediating N-terminal ubiquitination. Recent study reports that UBE2W is involved in male infertility. However, the correlation between UBE2W expression and hypospermatogenesis is unclear. The present study is to explore the biological role of UBE2W and its association with hypospermatogenesis. Results showed that the sexpression levels of UBE2W in mouse testes were gradually elevated from 2 to 10 weeks, while were significantly deceased in the testes with hypospermatogenesis. When UBE2W expression was successfully down-regulated in spermatogenic cells, the rate of apoptosis was significantly increased and the P53/Bcl-2/caspase 6/caspase 9 signal pathways were activated. Thus, these data indicate that UBE2W down-regulation promotes cell apoptosis and correlates with hypospermatogenesis, which may be helpful for the diagnosis of male infertility.
Collapse
Affiliation(s)
- Bin Lei
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lixia Xie
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shoubo Zhang
- Center for Reproductive Medicine, Guangdong Armed Police Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fangpeng Shu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Hospital of Integrated Traditional Chinese Medicine & Western medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Shi GJ, Zheng J, Wu J, Qiao HQ, Chang Q, Niu Y, Sun T, Li YX, Yu JQ. Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice. Food Funct 2017; 8:1215-1226. [DOI: 10.1039/c6fo01575a] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We determine if LBP contributes to the recovery from spermatogenic dysfunction in diabetic individuals.
Collapse
Affiliation(s)
- Guang-Jiang Shi
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
- Guolong Hospital
| | - Jie Zheng
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Jing Wu
- Laboratory Animal Center
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Hai-Qi Qiao
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry Education
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization
- Ministry of Education
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yu-Xiang Li
- College of Nursing
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Jian-Qiang Yu
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center
| |
Collapse
|