1
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|
2
|
Loss of Pleckstrin homology like domain, family A, member 1 promotes type Ⅱ alveolar epithelial cell apoptosis in chronic obstructive pulmonary disease emphysematous phenotype via interaction with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon. Int J Biochem Cell Biol 2022; 151:106297. [PMID: 36108948 DOI: 10.1016/j.biocel.2022.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022]
Abstract
Emphysematous phenotype is the most important phenotypic component of chronic obstructive pulmonary disease and is associated with substantial morbidity and mortality. The current pharmaceutical treatments and therapeutic procedures do not reduce pulmonary damage in patients with emphysematous phenotype. Therefore, it is important to identify effector molecules that can be used as interfering targets in such patients. Apoptosis of type II alveolar epithelial cells plays a key role in the phenotypic formation. This study aimed to further explore the molecular mechanisms involved in this process. The number of type II alveolar epithelial cells was significantly reduced due to increased apoptosis in patients with emphysematous phenotype compared to those with non-emphysematous phenotype. Pleckstrin homology like domain, family A, member 1 (PHLDA1) was mainly distributed in type II alveolar epithelial cells in both groups but was markedly reduced in patients with emphysematous phenotype. Overexpression of PHLDA1 prevented cigarette smoke extract-stimulated apoptosis of type II alveolar epithelial cells, whereas its knockdown worsened the apoptosis. PHLDA1 binding ability to tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) was weakened after exposure to cigarette smoke extract, with decreased PHLDA1 level lowering the abundance of YWHAE and attenuating the binding ability of YWHAE to p-Bad. These results demonstrate that considerable apoptosis of type II alveolar epithelial cells occurs in patients with emphysematous phenotype, and PHLDA1 may act as an effective antiapoptotic factor via YWHAE. Moreover, PHLDA1 may serve as a potential interfering target, providing insights into therapeutic strategies for emphysematous phenotype.
Collapse
|
3
|
Ghosh S, Parikh S, Nissa MU, Acharjee A, Singh A, Patwa D, Makwana P, Athalye A, Barpanda A, Laloraya M, Srivastava S, Parikh F. Semen Proteomics of COVID-19 Convalescent Men Reveals Disruption of Key Biological Pathways Relevant to Male Reproductive Function. ACS OMEGA 2022; 7:8601-8612. [PMID: 35309488 PMCID: PMC8928495 DOI: 10.1021/acsomega.1c06551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/22/2022] [Indexed: 05/09/2023]
Abstract
A considerable section of males suffered from COVID-19, with many experiencing long-term repercussions. Recovered males have been documented to have compromised fertility, albeit the mechanisms remain unclear. We investigated the impact of COVID-19 on semen proteome following complete clinical recovery using mass spectrometry. A label-free quantitative proteomics study involved 10 healthy fertile subjects and 17 COVID-19-recovered men. With 1% false discovery rate and >1 unique peptide stringency, MaxQuant analysis found 1099 proteins and 8503 peptides. Of the 48 differentially expressed proteins between the healthy and COVID-19-recovered groups, 21 proteins were downregulated and 27 were upregulated in COVID-19-recovered males. The major pathways involved in reproductive functions, such as sperm-oocyte recognition, testosterone response, cell motility regulation, adhesion regulation, extracellular matrix adhesion, and endopeptidase activity, were downregulated in COVID-19-recovered patients according to bioinformatics analysis. Furthermore, the targeted approach revealed significant downregulation of semenogelin 1 and prosaposin, two proteins related to male fertility. Therefore, we demonstrate the alteration of semen proteome in response to COVID-19, thus disrupting the male reproductive function despite the patient's clinical remission. Hence, to understand fertility-related biological processes triggered by this infection, a protracted evaluation of the consequences of COVID-19 in recovered men is warranted.
Collapse
Affiliation(s)
- Susmita Ghosh
- Proteomics
Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Swapneil Parikh
- Molecular
Laboratory, Kasturba Hospital for Infectious
Diseases, Mumbai 400011, India
| | - Mehar Un Nissa
- Proteomics
Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Arup Acharjee
- Proteomics
Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Avinash Singh
- Proteomics
Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Dhruv Patwa
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Prashant Makwana
- Jaslok-FertilTree
International Centre, Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, 8th Floor, Dr. G, Pedder Road, Mumbai 400026, Maharashtra, India
| | - Arundhati Athalye
- Jaslok-FertilTree
International Centre, Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, 8th Floor, Dr. G, Pedder Road, Mumbai 400026, Maharashtra, India
| | - Abhilash Barpanda
- Proteomics
Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Malini Laloraya
- Division
of Molecular Reproduction, Rajiv Gandhi
Centre for Biotechnology, Thycaud P.O.,
Poojappura, Thiruvananthapuram 695014, Kerala, India
| | - Sanjeeva Srivastava
- Proteomics
Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Firuza Parikh
- Jaslok-FertilTree
International Centre, Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, 8th Floor, Dr. G, Pedder Road, Mumbai 400026, Maharashtra, India
| |
Collapse
|
4
|
Zhao J, Xu H, Duan Z, Chen X, Ao Z, Chen Y, Ruan Y, Ni M. miR-31-5p Regulates 14-3-3 ɛ to Inhibit Prostate Cancer 22RV1 Cell Survival and Proliferation via PI3K/AKT/Bcl-2 Signaling Pathway. Cancer Manag Res 2020; 12:6679-6694. [PMID: 32801901 PMCID: PMC7402864 DOI: 10.2147/cmar.s247780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Prostate cancer (PCa) is one of the most common malignancies, and almost all patients with advanced PCa will develop castration-resistant prostate cancer (CRPC) after receiving endocrine therapy. Effective treatment for patients with CRPC has not been established. Novel approaches are needed to identify therapeutic targets for CRPC. Purpose Recent research studies have found that members of the 14-3-3 family play an important role in the development and progression of PCa. Previous results have shown that 14-3-3 ɛ is significantly upregulated in several cancers. This study aimed to identify novel miRNAs that regulate 14-3-3 ɛ expression and therapeutic targets for CRPC. Methods In this study, we used computation and experimental approaches for the prediction and verification of the miRNAs targeting 14-3-3 ɛ, and investigated the potential roles of 14-3-3 ɛ in the survival and proliferation of 22RV1 cells. Results We confirm that mir-31-5p is downregulated in 22RV1 cells and acts as a tumor suppressor by regulating 14-3-3 ɛ. Ectopic expression of miR-31-5p or 14-3-3 ɛ interference significantly inhibits cell proliferation, invasion, and migration in 22RV1 cells, as well as promotes cell apoptosis via the PI3K/AKT/Bcl-2 signaling pathway. Moreover, 14-3-3 ɛ is required for the miR-31-5p-mediated upregulation of the PI3K/AKT/Bcl-2 signaling pathway. Conclusion Our findings provide information on the underlying mechanisms of miR-31-5p/14-3-3 ɛ in 22RV1 cell proliferation and apoptosis through the PI3K/AKT/Bcl-2 signaling pathway. These results suggest that miR-31-5p and 14-3-3 ɛ may potentially be utilized as novel prognostic markers and therapeutic targets for PCa treatment.
Collapse
Affiliation(s)
- Jiafu Zhao
- College of Life Science, Guizhou University, Guiyang 550025, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Houqiang Xu
- College of Life Science, Guizhou University, Guiyang 550025, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yinglian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mengmeng Ni
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|