1
|
Jambor T, Goc Z, Zuscikova L, Greifova H, Kovacik A, Kovacikova E, Pec M, Lukac N. Phytochemical Screening and Monitoring of Intercellular Changes in Murine Leydig Cells After the Treatment of Trigonella foenum-graecum L. Microgreens In Vitro. Physiol Res 2025; 74:115-128. [PMID: 40126148 PMCID: PMC11995942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 03/25/2025] Open
Abstract
The objective of our in vitro study was to quantify the biochemical profile where the total polyphenol, flavonoid and phenolic acid content was determined. The antioxidant potential of microgreen extract from Trigonella foenum-graecum L., was measured molybdenum reducing power assay. Specifically, the study assessed parameters such as metabolic activity (AlamarBlueTM assay), membrane integrity (CFDA-AM assay), mitochondrial potential (JC-1 assay), as well as reactive oxygen species generation (NBT assay). In addition, the steroid hormone release in TM3 murine Leydig cells after 12 h and 24 h exposures were quantified by enzyme-linked immunosorbent assay. The gained results indicate the highest value in total flavonoid content (182.59+/-2.13 mg QE) determination, supported by a significant (108.25+/-1.27 mg TE) antioxidant activity. The effects on metabolic activity, cell membrane integrity, and mitochondrial membrane potential were found to be both time- and dose-dependent. Notably, a significant suppression in reactive oxygen species generation was confirmed at 150, 200 and 250 microg/ml after 24 h exposure. In addition, progesterone and testosterone release was stimulated up to 250 microg/ml dose of Trigonella, followed by a decline in both steroid production at 300 and 1000 microg/ml. Our results indicate, that Trigonella at lower experimental doses (up to 250 microg/ml) may positively affect majority of monitored cell parameters in TM3 Leydig cells. Overleaf, increasing experimental doses may negatively affect the intracellular parameters already after 12 h of in vitro exposure. Key words Microgreens, Trigonella foenum-graecum L., Fenugreek, Leydig cells, Male reproduction.
Collapse
Affiliation(s)
- T Jambor
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic. ; Jessenius Faculty of Medicine in Martin, Institute of Medical Biology, Comenius University Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Lopes-Ferreira JV, Matos JEM, Dias FCR, Siervo GEML, Gomes MLM. Protective effects of phenolic phytochemicals on male fertility: a narrative review. BRAZ J BIOL 2025; 85:e288879. [PMID: 39968999 DOI: 10.1590/1519-6984.288879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025] Open
Abstract
Infertility is a global health issue and is closely related to oxidative stress, which occurs when high concentrations of free radicals surpass the protective effects of antioxidant molecules and enzymes. Such imbalance causes damage to DNA, as well as cellular proteins and lipids, ultimately leading to the destruction of the blood-testis barrier. This, in turn, hinders spermatogenesis. Various plants and compounds have been employed in an attempt to reverse these damages, such as phenolic compounds. Therefore, this review aims to identify the main phytochemical phenolic compounds and their respective effects when used in the treatment of male infertility. Related information concerning phenolic phytochemical compounds was gathered from studies selected from PubMed, Scopus, and Web of Science databases. The search was conducted using the combination of six terms: "phenolic compounds", "male infertility", "testis", "spermatozoa", "testosterone" and "male fertility". These compounds can raise testosterone levels, reduce lipid peroxidation, and improve tubular histoarchitecture in cases of subfertility associated with diabetes mellitus. They can also mitigate the damage caused by obesity by increasing serum testosterone, antioxidant activity, and sperm motility. When it comes to fertility problems caused by inorganic and organic pollutants, these compounds effectively restore the structure of the seminiferous tubules, increase testosterone levels, and improve sperm quality. Furthermore, phenolic phytochemical compounds have shown beneficial effects in countering the adverse impacts of certain drugs on testicular physiology by reducing apoptosis in testicular tissue, increasing the number of Leydig cells, and promoting spermatocyte production. However, while these compounds may have protective effects on sperm cryopreservation for in vitro fertilization, caution is needed as certain dosages can cause irreversible damage to sperm quality. Overall, plant extracts containing phenolic phytochemical compounds hold promise as a therapeutic avenue for treating infertility and subfertility caused by metabolic disorders and environmental pollutants.
Collapse
Affiliation(s)
- J V Lopes-Ferreira
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - J E M Matos
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - F C R Dias
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - G E M L Siervo
- Universidade Federal do Triângulo Mineiro, Departamento de Patologia, Genética e Evolução, Uberaba, MG, Brasil
| | - M L M Gomes
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| |
Collapse
|
3
|
Nwadibia JA, Fasogbon IV, Musyoka AM, Ekpono EU, Ibiam UA, Orji OU, Eze ED, Onaadepo O, Agu PC, Aja PM. Protective effect of Ficus capensis lyophilized extract against carboplatin-induced liver injury via inhibition of oxidative stress and inflammation in rats. Toxicol Rep 2024; 13:101734. [PMID: 39328341 PMCID: PMC11426155 DOI: 10.1016/j.toxrep.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Patients who are receiving carboplatin therapy for cancer often experience toxic side effects. This study examined the effects of lyophilized aqueous leaf extracts of F. capensis (LALEFC) on oxidative stress and inflammatory markers in albino rats with carboplatin-damaged livers. We randomly assigned 35 rats to five experimental groups. Groups 2-5 underwent liver injury induction using carboplatin, while groups 1 and 2 served as the normal and carboplatin control groups, respectively. Groups 3-5 were the treatment groups. Treatments were performed for 17 days. We analyzed the quantitative phytochemical constituents of LALEFC using standard procedures and analyzed the liver oxidative stress and inflammatory markers using liver homogenate. The phytochemical constituents of LALEFC (mg/100 g) occur in the following order: The most abundant compounds were phenols (1577.72 ± 0.008), flavonoids (1253.13 ± 0.007), tannins (878.97 ± 0.007), alkaloids (652.66 ± 0.007), glycosides (314.39 ± 0.011), and terpenoids (261.18 ± 0.154), while steroids (0.573 ± 0.062), saponins (0.370 ± 0.003), and HCN (0.254.00 ± 0.006) were found in trace amount. The study of oxidative stress and inflammatory markers showed that giving carboplatin to rats greatly increased the levels of interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-α), malondialdehyde (MDA), reactive oxygen species (ROS), and caspase-3 activity. It also decreased the levels of reduced glutathione (GSH) and the activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). D). However, coadministration of LALEFC significantly restored the altered oxidative and inflammatory responses. This finding suggested that carboplatin induced liver injury through redox imbalance, which elevated the expression of inflammatory markers. LALEFC's restoration of altered markers could be relevant in the treatment of carboplatin-induced liver injury.
Collapse
Affiliation(s)
- Josiah Aja Nwadibia
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Angela Mumbua Musyoka
- Biochemistry Department, Faculty of Biomedical Sciences, Kampala International University, Uganda
| | - Ezebuilo Ugbala Ekpono
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Udu Ama Ibiam
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Obasi Uche Orji
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Olufunke Onaadepo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Nigeria
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Evangel University, Akaeze, Nigeria
| | - Patrick Maduabuchi Aja
- Biochemistry Department, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
- Biochemistry Department, Faculty of Biomedical Sciences, Kampala International University, Uganda
| |
Collapse
|
4
|
Zhi X, Du L, Zhang P, Guo X, Li W, Wang Y, He Q, Wu P, Lei X, Qu B. BPA induces testicular damage in male rodents via apoptosis, autophagy, and ferroptosis. Food Chem Toxicol 2024; 193:114984. [PMID: 39245402 DOI: 10.1016/j.fct.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Bisphenol A (BPA), chemically known as 2,2-bis(4-hydroxyphenyl) propane, is one of the most common endocrine-disrupting chemicals in our environment. Long-term or high-dose exposure to BPA may lead to testicular damage and adversely affect male reproductive function. In vivo studies on rodents have demonstrated that BPA triggers apoptosis in testicular cells through both intrinsic and extrinsic pathways. Further in vitro studies on spermatogonia, Sertoli cells, and Leydig cells have all confirmed the pro-apoptotic effects of BPA. Given these findings, apoptosis is considered a primary mode of cell death induced by BPA in testicular tissue. In addition, BPA promotes autophagy by altering the activity of the Akt/mTOR pathway and upregulating the expression of autophagy-related genes and proteins. Recent studies have also identified ferroptosis as a significant contributing factor to BPA-induced testicular damage, further complicating the landscape of BPA's effects. This review summarizes natural substances that mitigate BPA-induced testicular damage by inhibiting these cell death pathways. These findings not only highlight potential therapeutic strategies but also underscore the need for further research into the underlying mechanisms of BPA-induced toxicity, particularly as it pertains to human health risk assessment and the development of more effective BPA management strategies.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingdong Guo
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiwei Li
- The 81st Group Army Hospital of Chinese PLA, Zhangjiakou, China
| | - Yuan Wang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiduo He
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Peien Wu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Mao Y, Li D, Yang Q, Pei X, Duan Z, Ma M. Prenatal BPA exposure disrupts male reproductive functions by interfering with DNA methylation and GDNF expression in the testes of male offspring rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53741-53753. [PMID: 36864339 DOI: 10.1007/s11356-023-26154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
BPA is a ubiquitous environmental endocrine-disrupting chemical, and maternal exposure to BPA is associated with impaired male reproductive functions; however, the mechanisms remain to be elucidated. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in maintaining normal spermatogenesis and fertility. However, the effect of prenatal BPA exposure on GDNF expression and its mechanism in the testis has not been reported. In this study, pregnant Sprague-Dawley rats were respectively exposed to 0, 0.05, 0.5, 5, and 50 mg/kg/day BPA via oral gavage from gestational day (GD) 5 to GD 19, with 6 pregnant rats in each group. ELISA, histochemistry, real-time PCR, western blot, and methylation-specific PCR (MSP) were used to detect the sex hormone levels, testicular histopathology, mRNA and protein expression of DNA methyltransferases (DNMTs) and GDNF, and the promoter methylation of Gdnf in the testes of male offspring at postnatal day (PND) 21 and PND 56. Prenatal BPA exposure increased body weight; decreased sperm counts and serum levels of testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH); and induced testicular histological damage, which indicated the damage of male reproductive function. Prenatal BPA exposure also upregulated Dnmt1 in 5 mg/kg group and Dnmt3b in 0.5 mg/kg group, but down-regulated Dnmt1 in 50 mg/kg group at PND 21. At PND 56, Dnmt1 was significantly increased in 0.05 mg/kg group but decreased in 0.5, 5, and 50 mg/kg groups, Dnmt3a was decreased, and Dnmt3b was markedly increased in 0.05 and 0.5 mg/kg groups but decreased in 5 and 50 mg/kg groups. The mRNA and protein expression levels of Gdnf were decreased markedly in 0.5 and 50 mg/kg groups at PND 21. And the methylation level of Gdnf promoter was significantly increased in 0.5 mg/kg group, but decreased in 5 and 50 mg/kg groups at PND 21. In conclusion, our study indicates that prenatal BPA exposure disrupts male reproductive functions, interferes with the expression of DNMTs, and decreases Gdnf expression in the testes of male offspring. Gdnf expression may be regulated by DNA methylation; however, the detailed mechanism needs to be further investigated.
Collapse
Affiliation(s)
- Yaping Mao
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Dan Li
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Qiaoqiao Yang
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Xiucong Pei
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Zhiwen Duan
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China.
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China.
| |
Collapse
|
6
|
Al-Tawalbeh D, Bdeir R, Al-Momani J. The Use of Medicinal Herbs to Treat Male Infertility in Jordan: Evidence-Based Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/42rwhfit62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
8
|
Abdrabouh AE. Inflammatory and proapoptotic effects of inhaling gasoline fumes on the lung and ameliorative effects of fenugreek seeds. Sci Rep 2022; 12:14446. [PMID: 36002599 PMCID: PMC9402566 DOI: 10.1038/s41598-022-18607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Impacts of inhaling gasoline fumes on the lungs of adult male rats and the alleviating role of fenugreek seeds were evaluated. Twenty-four rats were divided into four groups, unexposed control and fenugreek groups, gasoline exposed groups for 6 h/6 day/week for 10 weeks with and without supplementation of fenugreek seed powder in food (5% w/w). Rats exposed to gasoline fumes showed significant elevation in lung tumor necrosis factor-α, as an inflammatory marker, and the proapoptotic marker Bax with a reduction in the antiapoptotic marker Bcl2. Moreover, remarkable elevations in transforming growth factor-β1, collagen and hydroxyproline were observed as fibrotic markers. Lung oxidative stress markers (hydrogen peroxides, malondialdehyde, and protein carbonyl) increased significantly along with marked decrease in total antioxidant capacity, superoxide dismutase, and catalase levels. Additionally, marked decreases in white and red blood cell counts, hemoglobin content, platelet count, accompanied by elevated red cell distribution width percentage were observed, supporting the inflammatory status. Histopathological changes represented by hematoxylin&eosin, immunohistochemistry staining for Bax&Bcl2, and transmission electron microscopy supported the negative impacts of gasoline fumes compared to the control group. Fenugreek seeds supplementation with gasoline exposure showed pronounced alleviation of lung biochemical and histopathological changes compared to the gasoline-exposed group.
Collapse
Affiliation(s)
- Abeer E Abdrabouh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Tekin S, Çelebi F. Investigation of the effect of hesperidin on some reproductive parameters in testicular toxicity induced by Bisphenol A. Andrologia 2022; 54:e14562. [PMID: 35985655 DOI: 10.1111/and.14562] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Bisphenol A (BPA) is one of the chemicals that cause dysfunction and infertility in testicles. Therefore, it is crucial to develop effective treatments against this damage. In this study, the effects of Hesperidin (HESP), a flavonoid in testicular toxicity induced by BPA in rats, on oxidative stress, inflammation, apoptosis, histological damage, spermatogenesis, steroidogenic enzymes and reproductive hormones were investigated. Our study used 52 Sprague Dawley male rats weighing 250-300 g, and four experimental groups were formed. From the experimental groups, 1 ml of olive oil was administered to the control group, HESP at a dose of 50 mg/kg to the HESP group, BPA at a dose of 100 mg/kg to the BPA group, HESP at a dose of 50 mg/kg to the BPA + HESP group and 100 mg/kg BPA was administered intragastrically (ig) for 14 days. We determined that BPA administration causes apoptosis, histological damage, inflammation, oxidative stress and toxic effects on spermatogenesis and steroidogenic enzymes in testicles. We observed that the administration of HESP with BPA attenuated oxidative stress, inflammation and apoptosis resulting in therapeutic effects on both steroidogenic enzymes and spermatogenesis and reproductive hormones (FSH, LH and testosterone). Our findings from this study clearly showed that while HESP treatment alleviates oxidative damage, inflammation and apoptosis in testicles of rats treated with BPA, it has regulatory effects on steroidogenic enzymes, spermatogenesis and serum reproductive hormones.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fikret Çelebi
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Malik J, Choudhary S, Mandal SC, Sarup P, Pahuja S. Oxidative Stress and Male Infertility: Role of Herbal Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:137-159. [PMID: 36472821 DOI: 10.1007/978-3-031-12966-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a universal health problem affecting 15% of couples, out of which 20-30% cases are due to male infertility. The leading causes of male infertility include hormonal defects, physical reasons, sexual problems, hazardous environment, stressful lifestyle, genetic factors, epigenetic factors, and oxidative stress. Various physiological functions involve reactive oxygen species (ROS) and nitrogen species at appropriate levels for proper smooth functioning. ROS control critical reproductive processes such as capacitation, acrosomal reaction, hyperactivation, egg penetration, and sperm head decondensation. The excessive free radicals or imbalance between ROS and endogenous antioxidant enzymes damages sperm membrane by inducing lipid peroxidation causing mitochondrial dysfunction and DNA damage that eventually lead to male infertility. Numerous synthetic products are available in the market to treat infertility problems, largely ending in side effects and repressing symptoms. Ayurveda contains a particular group of Rasayana herbs, called vajikarana, that deals with nourishment and stimulation of sexual tissues, improves male reproductive vitality, and deals with oxidative stress via antioxidant mechanism. The present study aims to describe oxidative stress and the role of herbal drugs in treating male infertility.
Collapse
Affiliation(s)
- Jai Malik
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Sunayna Choudhary
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Prerna Sarup
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| | - Sonia Pahuja
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| |
Collapse
|
11
|
Golmohammadi MG, Khoshdel F, Salimnejad R. Protective effect of resveratrol against bisphenol A-induced reproductive toxicity in male mice. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1965625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohammad Ghasem Golmohammadi
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Khoshdel
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Salimnejad
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
12
|
Antioxidant effect of Vitamin E on the male rat reproductive system by a high oral dose of Bisphenol-A. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/23978473211005562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among researchers, environmental pollutants and their contribution to male fertility are still being discussed. The use of antioxidants manages to boost the reproductive system with the scavenging of free radicals. This study aimed to investigate the inhibiting function of Vitamin E (VE) on Bisphenol-A (BPA) toxicity in the male rats’ reproductive system. Male rats were divided into 4 groups: control (negative control) group, BPA group treated by 250 mg/kg/day (positive control), VE group treated by 150 mg/kg/day (comparative control) and BPA + VE group that received both doses at the same time (Oral treatment by gavage; 56 days). Sperm parameters, testicular tissue morphometric and biochemical tests were evaluated. Sperm count, motility, viability, normal morphology, sperm tail length, spermatogenesis index and serum testosterone levels significantly decreased in the BPA group compared to the control group. Versus a significant enhancement in the positive-TUNEL germinal cells and serum malondialdehyde (MDA) levels were observed. Moreover, BPA exhibited no effect on sperm maturity and DNA integrity. In the simultaneous treatment group (BPA + EV), VE could improve and regulate all the mentioned parameters within the control group range. As mentioned, there was a significant difference in the results in the positive control group compared to the negative control group. But these data improved significantly in the BPA + VE. It can be concluded that in this group, VE was able to overcome the toxicity caused by positive control in their simultaneous treatment and maintain the data at the negative control group range. Therefore, no significant change was observed in the BPA + VE group compared to the negative control group.
Collapse
|
13
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
14
|
Sadogh A, Gorji N, Moeini R. Herbal foodstuffs in Avicenna's recommended diet to improve sperm quality and increase male fertility; an evidence-based approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:47-70. [PMID: 33544522 DOI: 10.1515/jcim-2020-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
Attention to diet was considered important issues in improvement of men infertility in Persian Medicine (PM). The purpose of this study was to extract herbal foodstuffs introduced by Avicenna, one of the greatest PM physicians to improve the semen production and to provide evidence of their impact on the basis of current studies."Canon of Medicine", the most important Avecinna's book, was searched with keywords equivalent to semen, fertility and infertility, main herbal foodstuffs were extracted and was searched with keywords sperm, semen, infertility, and fertility in Google scholar, PubMed and Scopus databases. Manuscripts from 1950 up to December 2019 were selected and reviewed. Almond, Onion, Chickpea, Garlic, Coconut, Palm date, Sesame, Fenugreek, Carrot, Fig, Grapes, Pistachio, Hazelnut and Walnut are among main foodstuffs which recommended by Avicenna and there is also evidence that they have positive effects on testosterone production and improvement of various sperm parameters, including count, motility and morphology. Containing large amount of different macro and micronutrients such as vitamins including vit B, C, A and E, minerals such as Mg, Se, Zn, Cu and Fe, important unsaturated fatty acids such as linoleic and oleic acids, amino acids such as lysine and arginine and phytochemicals such as polyphenols, flavonoids, triterpenes and steroids can be considered as a main factor in the effectiveness of these foodstuffs. Designing a diet based on the fruits, vegetables, nuts and seeds that Avicenna has recommended, may be effective in treating male infertility but further studies are needed to clarify this issue. Research on the effectiveness of his other recommended foodsuffs may also offer new treatments and supplements for this purpose.
Collapse
Affiliation(s)
- Azita Sadogh
- Student Reseaerch Committee, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Department of History of Medical Science, School of Persian medicine, Babol University of Medical Sciences, Tehran, Iran
| | - Reihaneh Moeini
- Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
15
|
Kaur S, Saluja M, Aniqa A, Sadwal S. Selenium attenuates bisphenol A incurred damage and apoptosis in mice testes by regulating mitogen-activated protein kinase signalling. Andrologia 2021; 53:e13975. [PMID: 33438769 DOI: 10.1111/and.13975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022] Open
Abstract
Being a vital micronutrient, along with a trace element, selenium (Se) protects the cells from oxidative stress (OS) in the form of selenoproteins. Bisphenol A (BPA) is a xeno-oestrogenic compound that adversely affects the spermatogenesis process by inducing oxidative stress, which ultimately leads to male infertility. Therefore, it is hypothesised that Se could protect against BPA-induced OS, and further germ cell death by modifying mitogen-activated protein kinase (MAPK) signalling. Male Balb/c mice were divided into four groups: Group I (C) (0.2 ppm Se), Group II (Se) (0.5 ppm Se), Group III (BPA) (0.2 ppm Se, and BPA = 1 mg/kg orally) and Group IV (Se + BPA) (0.5 ppm Se, and BPA = 1 mg/kg bodyweight orally). Results indicated that BPA-treated animals demonstrated a marked decrease in antioxidant enzyme activities (superoxide dismutase, catalase, redox ratio), a marked elevation in the expressions of stress-activated kinases (c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38) and the expressions of pro-apoptotic markers (caspase-9, caspase-8 and caspase-3). However, Se supplementation considerably restored the antioxidant enzyme activities and lowered the expressions of stress-activated kinases, which further down-regulated the apoptosis. Thus, Se supplementation demonstrated to be effective against BPA provoked testicular damage.
Collapse
Affiliation(s)
- Sarvnarinder Kaur
- Basic Medical Sciences (BMS) Block-2, Department of Biophysics, Panjab University, Chandigarh, India
| | - Muskaan Saluja
- Basic Medical Sciences (BMS) Block-2, Department of Biophysics, Panjab University, Chandigarh, India
| | - Aniqa Aniqa
- Basic Medical Sciences (BMS) Block-2, Department of Biophysics, Panjab University, Chandigarh, India
| | - Shilpa Sadwal
- Basic Medical Sciences (BMS) Block-2, Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|