1
|
Bozok ÜG, Özcan GB, Cinar FU. Reduction of Torsion-Detorsion-Induced Testicular Damage With Hawthorn Extract: Oxidative, Hormonal, and Histological Effects. Food Sci Nutr 2025; 13:e70211. [PMID: 40365043 PMCID: PMC12070032 DOI: 10.1002/fsn3.70211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
This study aimed to find out how hawthorn extract protects against damage caused by torsion/detorsion (T/D). In the study, four groups were formed, each consisting of eight rats: control, T/D, low-dose hawthorn extract (T/D + LD), and high-dose hawthorn extract (T/D + HD). The effect of testosterone hormone and oxidative stress parameters of total antioxidant level (TAS), total oxidant level (TOS), as well as oxidative stress index (OSI) were evaluated. We examined the histopathological effects of the hawthorn extract. Additionally, sperm count and motility were analyzed. The analyses were conducted using the IBM SPSS v22 program, and a p-value of less than 0.05 was deemed statistically significant. Testosterone, TAS, TOS, and OSI parameters show statistical differences between the groups (p = 0.014, p = 0.009, p = 0.021, p = 0.004, respectively). Group differences in testicular volume are statistically significant (p = 0.001). The sperm count exhibits a statistically significant difference between the groups (p = 0.00). Sperm motility was affected only by groups at a statistically significant level (p = 0.00). Histopathologically, tissue damage decreased in the hawthorn extract groups compared to the T/D groups. Hawthorn extract has the potential to alleviate T/D-induced damage by reducing oxidative stress and protecting testicular tissue. The findings suggest that hawthorn extract may have therapeutic potential in mitigating oxidative damage caused by testicular torsion and providing sustained protective effects. Longer-term studies should explore the effects of hawthorn extract in greater detail, as these findings indicate that it may be a promising treatment option for acute testicular injury.
Collapse
Affiliation(s)
- Ümmü Gülşen Bozok
- Department of Physiology, Faculty of MedicineAnkara Medipol UniversityAnkaraTürkiye
| | - Gülbahar Böyük Özcan
- Department of Physiology, Faculty of MedicineAnkara Medipol UniversityAnkaraTürkiye
| | - Fatma Uysal Cinar
- Department of Histology and EmbryologyFaculty of MedicineAnkara Medipol UniversityAnkaraTürkiye
| |
Collapse
|
2
|
Şahin Y, Üstüner E, Tutun H, Yildirim E, Eroğlu O, Kurtdede E, Ozkabadayi Y, Güncüm E, Kutluca K, Bilge AB. Effects of edaravone on testicular torsion-detorsion injury in rats. Andrology 2024; 12:1918-1927. [PMID: 38482942 DOI: 10.1111/andr.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND OBJECTIVE This study aimed to assess the protective ability of edaravone on testicular torsion-detorsion injury in rats. METHODS Eighteen adult male Sprague-Dawley rats were randomly divided into three groups: Sham group (control, n = 6); testicular torsion/detorsion (T/D group, n = 6) and T/D+edaravone (T/D+E group, n = 6). The spermatic cords of rats of the T/D group and the T/D+E group were rotated 720° in a clockwise direction and maintained for 120 min in this torsion position. Around 90 min after the torsion, edaravone at a dose of 10 mg/kg dissolved in saline was administered IP to the T/D+E group. The testicle was counter-rotated to its normal position to allow reperfusion for 4 h. Left testes of each animal were excised 240 min after beginning of reperfusion. Oxidative stress markers (TAS, TOS, SOD, and MDA) and apoptotic pathways (Caspase 3, Caspase 8, Caspase 9, Bcl-2, and Bax,) were assessed by ELISA methods. Also, testicles were subjected to the histopathologic and ultrasound examinations. RESULTS Ultrasound imaging showed that edaravone reduced the surface area and increased vascularization in testicles with T/D (p < 0.0001, p < 0.05, respectively). Edaravone pretreatment markedly decreased the levels of MDA, TOS, Bcl-2, Bax, Caspase 3, Caspase 8, and Caspase 9 (p < 0.0001). Also, it increased significantly TAS levels (p < 0.0001) and reduced insignificantly SOD activity. Histopathologic examinations demonstrated that edaravone significantly attenuated the histological damage caused by T/D in testicles. CONCLUSION Taken together, the findings indicate that pretreatment of edaravone has protective effect against testicular T/D injury.
Collapse
Affiliation(s)
- Yaşar Şahin
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Evren Üstüner
- Faculty of Medicine, Department of Radiology, Ankara University, Ankara, Turkey
| | - Hidayet Tutun
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ebru Yildirim
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Oğuz Eroğlu
- Faculty of Veterinary Medicine, Department of Emergency Medicine, Kirikkale University, Kirikkale, Turkey
| | - Efe Kurtdede
- Faculty of Veterinary Medicine, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Yasin Ozkabadayi
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Kirikkale University, Kirikkale, Turkey
| | - Enes Güncüm
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Kürşat Kutluca
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Bilgehan Bilge
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
3
|
Abdel-Aziz AM, Abdelmonaem AA, Thabit DM, Marey H, Ahmed SM. Protective effect of rupatadine on testicular ischemia/reperfusion injury in rats: Modulation of IL-6/STAT3, Akt/ mTOR signaling pathways. Toxicol Appl Pharmacol 2024; 492:117086. [PMID: 39243824 DOI: 10.1016/j.taap.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUNDS & AIM Spermatic cord rotation is a common problem in the field of urology, that finally results in necrosis of testicular tissue as well as male infertility. Rupatadine (RUP); a second-generation antihistaminic drug; demonstrated to have a possible protective effect in variable ischemia/reperfusion (I/R) rat models, but its role has not been studied yet in testicular I/R model. MATERIAL & METHODS The present study investigated RUP ability to ameliorate testicular I/R injury. The study includes four groups (6 rats/group); sham group, sham group pretreated with RUP (6 mg/kg/day; orally) for 14 days, I/R group, and RUP-I/R pretreated group. KEY FINDINGS The results demonstrated that I/R significantly lowered serum testosterone level and testicular tissue content of reduced glutathione. Besides, a significant elevation in malondialdehyde level, hypoxia-inducible factor-1, signal transducers and activators of transcription-3 (STAT-3), interleukin-6 (IL-6), histamine, and platelet activating factor levels along with an inhibition in testicular tissue level of vascular endothelial growth factor-A (VEGF-A) with an evident increase in caspase-3 immunoexpression in germ cells. Also, I/R significantly lowered p-AKT and mTOR testicular expression. While, RUP-I/R pretreated group showed a reversal in the testicular I/R damaging effects in a significant manner in the all the aforementioned parameters. CONCLUSION Based on these findings; RUP was proved to have a possible protective effect in testicular I/R injury via its antioxidant effect and its ability to modulate IL-6/STAT3, Akt/ mTOR inflammatory signaling pathways with improvement in the testicular VEGF-A level.
Collapse
Affiliation(s)
| | | | - Dina Moustafa Thabit
- Department of pathology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Heba Marey
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Sara M Ahmed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
4
|
Eisa EFM, Ezzeldein SAM, Mohammed HA, Abdallah AA, Ghonimi WAM, Abd El Raouf M. Comparison of the therapeutic effect of platelet-rich plasma and injectable platelet-rich fibrin on testicular torsion/detorsion injury in rats. Sci Rep 2024; 14:18045. [PMID: 39103420 PMCID: PMC11300838 DOI: 10.1038/s41598-024-67704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Testicular torsion is a common disorder in males and results in blockage of testicular circulation with subsequent damage of testicular germ cells. The current work aimed to compare the therapeutic effect of platelet-rich plasma (PRP) and injectable platelet-rich fibrin (i-PRF) on torsion/detorsion (T/D) injury in rats. Forty mature male Wister rats were arranged into 4 groups; (1) Control, (2) T/D, (3) T/D + PRP, and (4) T/D+ i-PRF. The right testis was twisting 1080° clockwise for 3 h in groups 2, 3 and 4, then 10 μl of PRP or i-PRF was injected intra-testicular 3 h after detorsion in groups 3 and 4, respectively. After 30 days postoperatively, the semen quality and hormonal assay were improved in PRP and i-PRF-treated groups with superiority of i-PRF (P < 0.001). High significance of Catalase, Glutathione Peroxidase (GPx), Superoxide Dismutase, Interleukin-1β (IL-1β), Caspase-3 and Tumor necrosis factor-α (TNF-α) was reported in treated rats with PRP and i-PRF (P < 0.001) with superiority to i-PRF-treated rats (P < 0.001). Testicular histoarchitectures were improved in PRP and i-PRF-treated rats with superiority of i-PRF-treated rats. It was concluded that PRP and i-PRF have regenerative efficacy on testicular damage after induced T/D injury with a superior efficacy of i-PRF.
Collapse
Affiliation(s)
- Eslam F M Eisa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Shimaa A M Ezzeldein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa A Abdallah
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A M Ghonimi
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mustafa Abd El Raouf
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
5
|
Minas A, Mahmoudabadi S, Gamchi NS, Antoniassi MP, Alizadeh A, Bertolla RP. Testicular torsion in vivo models: Mechanisms and treatments. Andrology 2023; 11:1267-1285. [PMID: 36825607 DOI: 10.1111/andr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Testicular torsion is a condition in which a testis rotates around its longitudinal axis and twists the spermatic cord. This in turn results in a significant decrease in blood flow and perfusion of testicular tissue. During Testicular torsion, the testicular tissue is affected by ischemia, heat stress, hypoxia, and oxidative and nitrosative stress. The testicular torsion should be considered an emergency condition and surgical intervention (testicular detorsion ) as the sole treatment option in viable cases involves counter-rotation on twisted testes associated, when possible, to orchipexy, in order to avoid recurrence. Possible testicular detorsion side-effects occur due to reperfusion and endothelial cells injury, microcirculation disturbances, and intense germ cells loss. OBJECTIVES To discuss testicular torsion surgery-based methods, different time frames for testicular torsion induction, and the associated pathophysiology by emphasizing cellular and molecular events as well as different therapeutic agent applications for testicular torsion. MATERIALS AND METHODS We reviewed all original research and epidemiological papers related to testicular torsion condition. RESULTS Testicular torsion causes germ cell necrosis, arrested spermatogenesis, and diminished testosterone levels, with consequent infertility. Among different involved pathophysiological impacts, testicular torsion/detorsion-induced ischemia seems to play the key role by leading the tissue toward other series of events in testis. Numerous studies have used adjuvant antioxidants, calcium channel blockers, anti-inflammatory agents, or vasodilating agents in order to decrease these effects. DISCUSSION AND CONCLUSION To the best of our knowledge, no previously conducted study examined therapeutical agents' beneficial effects post clinical I/R condition in humans. Different agents targeting different pathophysiological conditions were used to ameliorate the ischemia/reperfusion-induced condition in animal models, however, none of the administrated agents were tested in human cases. Although considering testicular detorsion surgery is still the golden method to reverse the testicular torsion condition and the surgical approach is undeniable, the evaluated agents with beneficial effects, need to be investigated furthermore in clinical conditions. Thus, furthermore clinical studies and case reports are required to approve the animal models proposed agents' beneficial impacts.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Sina Mahmoudabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Shamsi Gamchi
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mariana Pereira Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| |
Collapse
|
6
|
Hou F, Huang J, Qing F, Guo T, Ouyang S, Xie L, Ding Y, Yu J, Li Y, Liu X, He TS, Fan X, Liu Z. The rare-earth yttrium induces cell apoptosis and autophagy in the male reproductive system through ROS-Ca 2+-CamkII/Ampk axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115262. [PMID: 37480693 DOI: 10.1016/j.ecoenv.2023.115262] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.
Collapse
Affiliation(s)
- Fangpeng Hou
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Furong Qing
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Sijia Ouyang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yechun Ding
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jingge Yu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yanmin Li
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Xia Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tian-Sheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Xiaona Fan
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
7
|
Sayed DF, Mohamed MA, Nada AS, Temraz A, Ahmed AH. Hepatoprotective role of myricitrin isolated from Mimusops elengi Linn. leaves extract on γ-radiation-induced liver damage in rats: Phyto-biochemical investigations. Cell Biochem Funct 2023; 41:642-657. [PMID: 37342005 DOI: 10.1002/cbf.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023]
Abstract
The hepatoprotective effects of methanol extract of Mimusops elengi Linn. (M. elengi L.) leaves and isolated pure myricitrin (3-, 4-, 5-, 5, 7-five hydroxyflavone-3-O-α-l-rhamnoside) (Myr) were evaluated in male rats exposed to γ-irradiation. The extraction of M. elengi L. leaves was performed using ethyl acetate (EtOAC). Seven groups of rats were used: control group, irradiated (IRR) group (6 Gy of γ-rays in a single dose), vehicle group (oral administration of 0.5% carboxymethyl cellulose for 10 days), EtOAC extract group (100 mg/kg body weight of extract, orally for 10 days), EtOAC + IRR group (administration of extract and exposure to γ-rays on Day 7), Myr group (50 mg/kg body weight Myr, orally for 10 days), and Myr + IRR group (administration of Myr and exposure to γ-rays on Day 7). High-performance liquid chromatography and 1H-nuclear magnetic resonance were used to isolate and characterize the compounds from M. elengi L. leaves. Enzyme-linked immunosorbent assay was used for biochemical analyses. Identified compounds were Myr, myricetin 3-O-galactoside, myricetin 3-O-rahmnopyranoside (1 → 6) glucopyranoside, quercetin, quercitol, gallic acid, α-,β-amyrin, ursolic acid, and lupeol. Serum aspartate transaminase and alanine transaminase activities were significantly increased, while serum protein and albumin levels were significantly decreased after irradiation. Hepatic levels of tumor necrosis factor-α, prostaglandin 2, inducible nitric oxide synthase, interleukin-6 (IL-6), and IL-12 were increased following irradiation. Improvements were observed in most serological parameters after treatment with extract or pure Myr, with histological analyses confirming decreased liver injury in treated rats. Our study demonstrates that pure Myr has a greater hepatoprotective effect than M. elengi leaf extracts against irradiation-induced hepatic inflammation.
Collapse
Affiliation(s)
- Dina F Sayed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Marwa A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| |
Collapse
|
8
|
Abdullah DM, Alsemeh AE, Khamis T. Semaglutide early intervention attenuated testicular dysfunction by targeting the GLP-1-PPAR-α-Kisspeptin-Steroidogenesis signaling pathway in a testicular ischemia-reperfusion rat model. Peptides 2022; 149:170711. [PMID: 34920048 DOI: 10.1016/j.peptides.2021.170711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
Testicular torsion is a serious emergency and a well-known cause of male infertility. It represents 10 %-15 % of scrotal diseases in children. Kisspeptin (KISS1) is a hormone secreted from the hypothalamic nuclei and testis, but its role in testis is not fully understood. Semaglutide is a novel antidiabetic glucagon-like peptide 1 (GLP-1) analog. Hence, we designed the current study to elucidate the possible ameliorative effect of semaglutide on ischemia/reperfusion-induced testicular dysfunction in rats and highlight the role of the testicular GLP-1/PCG-1α-PPAR-α-KISS1 signaling pathway. We randomly divided 50 male Sprague Dawley into five equal groups (10 rats each): SHAM, exendin 9-39 -treated (EX), testicular torsion/detorsion (T/D), testicular torsion/detorsion and semaglutide-treated (SEM + T/D), and testicular torsion/detorsion, exendin, and semaglutide-treated (EX + SEM + T/D). We quantified serum follicle-stimulating hormone, luteinizing hormone, total testosterone, testicular oxidative stress markers, testicular gene expression of GLP-1/KISS1 pathway-related genes (KISS1, KISS1R, GLP-1, GLP-1R, PGC-1α, PPAR-α), steroidogenesis pathway-related genes (STAR, CYP11A1, CYP17A1, HSD17B3, CYP19A1), HO-1, Nrf-2, and testicular protein expression of HIF-1α, TNF-α, NF-κβ, Caspase-3, FAS, proliferating cell nuclear antigen, and KISS1 through testicular histopathology and immunohistochemistry assays. Testicular torsion/detorsion markedly elevated proapoptotic, proinflammatory, and oxidative stress marker levels, noticeably downregulating the expression of GLP-1/KISS1 and steroidogenesis pathway-related proteins. Semaglutide administration significantly ameliorated all these deleterious effects. Nevertheless, injecting exendin, a GLP1-R antagonist, before semaglutide abolished all the documented improvements. We concluded that semaglutide ameliorated ischemia/reperfusion-induced testicular dysfunction by modulating the GLP-1/PGC-1α-PPAR-α/KISS1/steroidogenesis signaling pathway, improving testicular oxidative state, and suppressing testicular inflammation and apoptosis.
Collapse
Affiliation(s)
- Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
9
|
Davoodi F, Taheri S, Raisi A, Rajabzadeh A, Zakian A, Hablolvarid MH, Ahmadvand H. Leech therapy (Hirudo medicinalis) attenuates testicular damages induced by testicular ischemia/reperfusion in an animal model. BMC Vet Res 2021; 17:256. [PMID: 34315461 PMCID: PMC8314469 DOI: 10.1186/s12917-021-02951-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Testicular torsion/detorsion triggers tissue ischemia/reperfusion, leading to reactive oxygen species overgeneration and apoptosis. The saliva of leeches is full of anti-inflammatory, anticoagulants, antioxidants, and antimicrobial agents. Therefore, this study aimed to assess the protective mechanism of leech therapy on testicular ischemia/reperfusion damage. METHODS 18 adult male rats were randomly divided into three groups: 1-Sham-operated group (SO). 2-Torsion/detorsion (T.D) group: two hours of testicular torsion with two hours of testicular detorsion was performed. 3-Torsion/detorsion + Leech therapy (TDL) group. Sperm parameters (motility, vitality, morphology, and concentration), oxidative stress biomarkers (MDA, CAT, GPx, and TAC), histopathological factors (Mean seminiferous tubular diameter, Germinal epithelial cell thickness, Testicular capsule thickness, Johnson's score, and Cosentino's score), and immunohistochemical markers for apoptosis detection (Bax, Bcl-2, and Caspase-3) were measured. RESULTS There was a significant difference for all sperm parameters in the T. D group compared to the sham group. Leech therapy significantly increased progressive motility and normal morphology and reduced non-progressive motility. In the TDL group, MDA concentration significantly reduced, and levels of GPx, TAC, and CAT remarkably increased. All evaluated histopathological parameters in the TDL group significantly increased compared to the T. D group except for the testicular capsule thickness. T. D notably increased the expression of Bax and Caspase-3, while the treatment group slowed the rate of apoptosis compared to the control group. Bcl-2 expression in the T. D group was significantly lower than that in the sham group. Leech therapy increased the Bcl-2 expression. CONCLUSION Leech therapy attenuates damages to testicular tissue following torsion/detorsion due to its antioxidant, anti-inflammatory, and anti-apoptotic effects. Hence, it can be considered as an effective remedy for testicular ischemia/reperfusion.
Collapse
Affiliation(s)
- Farshid Davoodi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Shayan Taheri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Asghar Rajabzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Zakian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Mohammad Hassan Hablolvarid
- Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Unsal V, Kolukcu E, Gevrek F, Firat F. Sinapic acid reduces ischemia/reperfusion injury due to testicular torsion/detorsion in rats. Andrologia 2021; 53:e14117. [PMID: 34081348 DOI: 10.1111/and.14117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
This study aimed to investigate the protective effect of sinapic acid (SA) on biochemical and histopathological changes in an experimental testicular torsion-detorsion rat model. Twenty-four rats were randomised into four groups: sham group, ischemia/reperfusion (IR) group subjected to testicular torsion for 2 hr and then detorsion for 4 hr, and two groups treated with SA1 and SA2 (10 mg/kg and 20 mg/kg, by single intraperitoneal injection, 30 min before reperfusion). Serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were measured by an autoanalyzer, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), protein carbonyl (PC), and nitric oxide (NO) oxidative stress parameters by spectrophotometric methods, and tumour necrosis factor (TNF-α), interleukin-1 beta (IL-1β), and interleukin 6 (IL-6) parameters by the Elisa method. In addition, immunohistochemical and histopathological examinations were performed on testicular tissues. There was no significant difference between the groups in terms of serum testosterone, FSH and LH levels (p > .05). SA significantly reduced increased testicular damage, oxidative stress, inflammation, cell death and also restored decreased antioxidant enzyme activities (p < .05). Pre-treatment of rats with SA reduced testicular dysfunction and morphological changes IRI. SA's antioxidant, anti-inflammatory, and antiapoptotic properties were found to be protective against testicular IR.
Collapse
Affiliation(s)
- Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| | - Engin Kolukcu
- Department of Urology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, Turkey
| | - Fatih Firat
- Department of Urology, Tokat State Hospital, Tokat, Turkey
| |
Collapse
|