1
|
Abdel-Aty DM, Ibrahim MA, Mohamed SR, El-Khadragy MF, Abdel Moneim AE, Fathalla AS, Soliman D. Rutin and Moringa oleifera leaf extract prevent monosodium glutamate-induced testicular toxicity in adult male albino rats. Front Vet Sci 2025; 12:1566471. [PMID: 40417365 PMCID: PMC12098506 DOI: 10.3389/fvets.2025.1566471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Monosodium glutamate (MG) is a substance often used to enhance food flavor, but its effect on the reproductive system is known to have a negative impact. This study assessed the protective effects of rutin (RUT) and Moringa oleifera leaf extract (MOLE) on testicular toxicity induced by MG in rats. Methods There were six groups: Control, RUT, MOLE, MG, RUT + MG, and MOLE + MG. The critical parameters measured were testicular index, hormone levels, antioxidants, oxidative stress markers, inflammation, apoptosis and histopathological changes. Results Following MG exposure (60 mg/kg/day for 30 days), the testicular index and serum testosterone, LH, and FSH levels were significantly reduced. The markers of oxidative stress increased, whereas the antioxidants decreased. The levels of inflammatory and apoptotic markers increased. The increased expression of inflammatory and apoptotic markers and significant testicular tissue damage, including degenerative changes in the seminiferous tubules, infiltration of inflammatory cells, and deposition of collagen fibers were investigated in addition to an increase in inflammatory and apoptotic markers. Discussion The present study showed that pre-administration of RUT or MOLE ameliorated the deleterious effects of MG, possibly due to antioxidant and anti-inflammatory properties, indicating a protective effect of RUT and MOLE on MG-induced testicular toxicity.
Collapse
Affiliation(s)
- Doaa M. Abdel-Aty
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mona A. Ibrahim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sherif R. Mohamed
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, Nasiriyah, Iraq
| | - Ayah S. Fathalla
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Doaa Soliman
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Zhang S, Lin T, Bao Y, She J, Liu X, Hu J, Peng A, Liu X, Huang H. Integrated Multiomics Analyses Reveal Molecular Insights into How Intermittent Fasting Ameliorates Obesity and Increases Fertility in Male Mice. Nutrients 2025; 17:1029. [PMID: 40292466 PMCID: PMC11945891 DOI: 10.3390/nu17061029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Intermittent fasting (IF) has been increasingly recognized for its potential to mitigate obesity and diabetes. However, it remains unclear whether IF can alleviate metabolic disorder-induced male infertility. The aim of this study was to investigate the potential of IF to improve fertility outcomes in obese mice. Methods: Eight-week-old C57BL/6J mice were fed a high-fat diet (HFD) for 24 weeks to induce obesity, followed by alternate-day fasting for 6 weeks. We assessed obesity-related metabolic changes and fertility issues postintervention. Comprehensive metabolomic and transcriptomic analyses of serum and testicular samples were used to identify significant metabolic pathway modifications attributable to IF. Results: IF effectively alleviated obesity-induced male infertility, demonstrating significant attenuation of body weight gain and restoration of testicular morphology. IF normalized hypogonadism-associated testosterone depletion and improved sperm parameters. Testis multi-omics integration revealed IF-mediated reprogramming of testicular purine metabolism, coupled with coordinated regulation of glycolipid metabolism and inflammatory-immune homeostasis. Reproductive competence was enhanced as evidenced by statistically elevated successful mating rates and embryonic developmental progression. Serum metabolomics further identified metabolites involved in amino acid metabolism, glycolipid metabolism, and inflammation (e.g., methionine, BCAA, glutathione, and spermidine) may serve as potential targets for treating obesity-related metabolic disorders. Additionally, multidimensional analysis highlighted the crucial role of allantoin in alleviating obesity and related reproductive dysfunction. Conclusions: IF not only resolves obesity-induced metabolic issues but also alleviates male infertility by regulating bioactive metabolites and gene expression linked to glycolipid metabolism, energy homeostasis, and immune responses in the testis. Our study provides a theoretical basis for IF as a clinical treatment for obesity-induced male infertility.
Collapse
Affiliation(s)
- Shuyu Zhang
- The International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200030, China
| | - Tingting Lin
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yucheng Bao
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200003, China
| | - Junsen She
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xuanqi Liu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiaxue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aibing Peng
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200030, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200030, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
| |
Collapse
|
3
|
Elebishehy A, Ahmed MM, Aldahmash B, Mohamed MA, Shetaia AA, Khalifa SAM, Eldaim MAA, El-Seedi HR, Yosri N. Cymbopogon schoenanthus (L) extract ameliorates high fat diet-induced obesity and dyslipidemia via reducing expression of lipogenic and thermogenic proteins. Fitoterapia 2024; 175:105897. [PMID: 38479618 DOI: 10.1016/j.fitote.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.
Collapse
Affiliation(s)
- Asmaa Elebishehy
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt.
| | - Badr Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Aya A Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, Menoufia, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic plants, Research Institute of Medicinal and Aro-matic plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Uddandrao VVS, Brahma Naidu P, Chandrasekaran P, Saravanan G. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int J Obes (Lond) 2024; 48:147-165. [PMID: 37963998 DOI: 10.1038/s41366-023-01411-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Obesity is a complex multifactorial disease in which the accumulation of excess body fat has adverse health effects, as it can increase the risk of several problems, including infertility, in both men and women. Obesity and infertility have risen together in recent years. Against this background, the present review aims to highlight the impact of obesity on infertility and the underlying pathophysiology of obesity-related infertility (ORI) in men and women, and to provide readers with knowledge of current trends in the effective development of phytotherapeutics for its treatment. METHODS We thoroughly searched in PubMed, MEDLINE, Scopus, EMBASE, and Google Scholar to find all relevant papers on ORI and the therapeutic effects of phytotherapeutics on ORI in men and women. RESULTS The extensive search of the available literature revealed that obesity affects reproductive function through several complex mechanisms such as hyperlipidaemia, hyperinsulinaemia, hyperandrogenism, increased body mass index, disruption of the hormonal milieu, systemic inflammation, oxidative stress, alterations in epigenetics and dysbiosis. On the other hand, several studies reported that phytotherapeutics has a broad therapeutic spectrum of action by improving sex hormone homeostasis, ovarian dysfunction, menstrual cycle and inhibiting ovarian hyperplasia, as well as down-regulating ovarian apoptosis, inflammation and oxidative stress, and controlling metabolic dysfunction in obese women. Male infertility is also addressed by phytotherapeutics by suppressing lipogenesis, increasing testosterone, 3β-HSD and 17β-HSD levels, improving sperm parameters and attenuating testicular dyslipidaemia, oxidative stress, inflammation and germ cell apoptosis. CONCLUSIONS In the present review, we discussed the effects of obesity on reproductive dysfunction in men and women and the underlying pathophysiology of ORI. In addition, the therapeutic effect of phytotherapeutics against ORI was highlighted.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India.
| | - Parim Brahma Naidu
- Department of Animal Physiology and Biochemistry, National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, 500078, India
| | - P Chandrasekaran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| | - G Saravanan
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| |
Collapse
|
5
|
Zhu B, Niu Y, Niu L, Zhang X, Liu F. Exploring the application of sildenafil for high-fat diet-induced erectile dysfunction based on interleukin-18-mediated NLRP3/Caspase-1 signaling pathway. Sex Med 2023; 11:qfad044. [PMID: 37636019 PMCID: PMC10460117 DOI: 10.1093/sexmed/qfad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Background Inflammation is a key risk factor for heart disease and has also been linked to erectile dysfunction (ED). Sildenafil is a phosphodiesterase type 5 inhibitor with a strong antioxidant effect. Interleukin (IL)-18 is a proinflammatory factor. Excessive production and release of IL-18 disrupt the balance between IL-18 and IL-18 binding proteins in certain inflammatory diseases, leading to the occurrence of pathological inflammation. Aim We evaluated the effects of sildenafil on erectile function in a rat model of high-fat diet-induced ED. Methods Male Sprague Dawley rats (6 weeks old) were divided into 5 groups: control, ED, sildenafil, IL-18, and IL-18 + sildenafil. Subsequently, intracavernous pressure and mean arterial pressure were used to assess the erectile function of these rats. The expression of endothelial nitric oxide synthase, pyroptosis factors, and the ratio of smooth muscle cells and collagen fibers were evaluated in the serum and corpora tissue. Outcomes Exploring the role and mechanism of sildenafil in ED through NLRP3-mediated pyroptosis pathway. Results In comparison to the ED and IL-18 groups, there were statistically significant increases in the ratio of intracavernous pressure to mean arterial pressure, endothelial nitric oxide synthase expression, and the ratio of smooth muscle cells to collagen fibers following sildenafil intervention (P < .05). The sildenafil group and IL-18 + sildenafil group also showed statistically significant decreases the expression of NLRP3, caspase-1, and gasdermin D (P < .05). Clinical Implications Sildenafil can improve erectile dysfunction by inhibiting inflammation. Strengths and Limitations Strengths are that the relationship between pyroptosis and ED has been verified through in vitro and in vivo experiments. The limitation is that the conclusions drawn from animal and cells experiments need to be confirmed in clinical research. Conclusion Sildenafil may reduce the effect of IL-18-induced inflammation in high-fat diet-induced ED rats through NLRP3/caspase-1 pyroptosis pathway.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Yangjiu Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Lipan Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Xijia Zhang
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| |
Collapse
|