1
|
Zeng J, Yuan L, Chen G, Qi Y, Qie X, Jin Y, Chen Y, Li H. The ferroptosis of sertoli cells inducing blood-testis barrier damage is produced by oxidative stress in cryptorchidism. Free Radic Biol Med 2025; 232:97-106. [PMID: 40032029 DOI: 10.1016/j.freeradbiomed.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Oxidative Stress (OS) is the main cause of damage to the Blood-Testis Barrier (BTB) in cryptorchidism, which seriously endangers male reproductive health. It is well known that the OS induced ferroptosis is an important cause of dysfunction in the body. However, it is still unknown whether BTB damage in cryptorchidism leads to ferroptosis of Sertoli cells. We establishing the cryptorchidism model through surgery to avoid the complex effects of drugs on the model animals, combined with in vitro culture of the primary Sertoli cells for validation, and the methods of immunofluorescence staining, Western blotting and Prussian blue staining were used to study the oxidative stress in cryptorchidism. The effects of ferroptosis of Sertoli cells inducing BTB damage caused by OS in cryptorchidism were analyzed. We found that the inhibition of Nrf-2/keap-1/HO-1 pathway resulted in decreased expression levels of Glutathione Peroxidase 4 (GPX4), Ferroportin 1 (FPN1), and increased expression of Ferritin light chain (FTL) protein. Our research further confirms that inhibiting ferroptosis reduced BTB damage by reflecting a decrease expression of Zonula Occludens protein 1 (ZO-1), Occludin and Claudin-11 protein caused by OS. In addition, we found that the testosterone (T) secretion disorders and the supplementation of T can alleviate the damage of the BTB in cryptorchidism, and this effect is achieved through the Androgen Receptor (AR). In conclusion, our study found that the inhibition of Nrf-2/keap-1/HO-1 pathway in testis and the reduction of Tight junction proteins (TJs) ZO-1, Occludin and Claudin-11 protein expression levels in cryptorchidic mice, indicated that the cryptorchidism triggering a serious reproductive disorder, and one of the important reasons is the OS induced ferroptosis of Sertoli cells, which ultimately leads to the damage of the BTB. This findings may have important implications in the field of male reproductive disorders.
Collapse
Affiliation(s)
- Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| | - Guojuan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Huangzhong District Animal Disease Prevention and Control Center, Xining, 811600, China
| | - Yumei Qi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Xiaolong Qie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Yajuan Jin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Yulu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Haijun Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| |
Collapse
|
2
|
Cai D, Li J, Peng Z, Fu R, Chen C, Liu F, Li Y, Su Y, Li C, Chen W. Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities. Int J Mol Sci 2025; 26:3496. [PMID: 40331931 PMCID: PMC12026609 DOI: 10.3390/ijms26083496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Male infertility is intricately linked to dysregulated cell death pathways, including ferroptosis, cuproptosis, pyroptosis, and autophagy. Ferroptosis, driven by iron-dependent lipid peroxidation through the Fenton reaction and inactivation of the GPX4/Nrf2/SLC7A11 axis, disrupts spermatogenesis under conditions of oxidative stress, environmental toxin exposure, or metabolic disorders. Similarly, cuproptosis-characterized by mitochondrial dysfunction and disulfide stress due to copper overload-exacerbates germ cell apoptosis via FDX1 activation and NADPH depletion. Pyroptosis, mediated by the NLRP3 inflammasome and gasdermin D, amplifies testicular inflammation and germ cell loss via IL-1β/IL-18 release, particularly in response to environmental insults. Autophagy maintains testicular homeostasis by clearing damaged organelles and proteins; however, its dysregulation impairs sperm maturation and compromises blood-testis barrier integrity. These pathways intersect through shared regulators; reactive oxygen species and mTOR modulate the autophagy-pyroptosis balance, while Nrf2 and FDX1 bridge ferroptosis-cuproptosis crosstalk. Therapeutic interventions targeting these mechanisms have shown promise in preclinical models. However, challenges persist, including the tissue-specific roles of gasdermin isoforms, off-target effects of pharmacological inhibitors, and transgenerational epigenetic impacts of environmental toxins. This review synthesizes current molecular insights into the cell death pathways implicated in male infertility, emphasizing their interplay and translational potential for restoring spermatogenic function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Chen
- Health Science Center, Hunan Normal University, Changsha 410013, China; (D.C.); (J.L.); (Z.P.); (R.F.); (C.C.); (F.L.); (Y.L.); (Y.S.); (C.L.)
| |
Collapse
|
3
|
Meng K, Liu Q, Qin Y, Qin W, Zhu Z, Sun L, Jiang M, Adu-Amankwaah J, Gao F, Tan R, Yuan J. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin Med J (Engl) 2025; 138:379-388. [PMID: 38855875 PMCID: PMC11845199 DOI: 10.1097/cm9.0000000000003126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Collapse
Affiliation(s)
- Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| | - Qian Liu
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Yiding Qin
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Wenjie Qin
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Ziming Zhu
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Longlong Sun
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Mingchao Jiang
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Joseph Adu-Amankwaah
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Fei Gao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 101408, China
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
4
|
Tatar M, Tüfekci KK, Uslu S. A determination of the main regulators of necroptosis in testicular tissue under different heat stresses. J Mol Histol 2025; 56:74. [PMID: 39856359 DOI: 10.1007/s10735-024-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Although minimal increases in testicular temperature can compromise spermatogenesis and lead to fertility-related problems, the basic mechanism involved in germ cell destruction as a response to heat stress is still unclear. However, necroptosis is known to regulate a number of physiological and pathological events. This study investigated the role of RIPK1/RIPK3 and MLKL, the main regulators of necroptosis, against different heat stresses in testis tissue. Forty-two Wistar albino rats were divided into seven groups: six experimental exposed to heat stress and one control. Heat stress was induced by causing the rats to swim for 30 min daily for 60 days in a water bath at temperatures of 39 °C and 43 °C. Testis tissues were collected while the animals were under anesthesia on the 1st, 7th, and 14th days after 60 days of heat application. The tissues were first fixed in Bouin's solution. After routine histological procedures, immunohistochemical staining was performed on one-half of the tissues using RIPK1/RIPK3 and MLKL primary antibodies on serially collected 5 μm-thick sections. Immunoblotting analysis was performed on the other half. Analyses revealed an increase in the expression of RIPK1/RIPK3 and MLKL proteins, regulators of necroptosis, in both the 39 °C and 43 °C groups, although this was greater in the tissue exposed to 43 °C heat stress. These molecules were also especially affected by round and elongated spermatids, and reactivity was observed in Leydig cells. In conclusion, exposure to increased temperature may cause RIPK1/RIPK3 and MLKL-mediated cellular changes in the testis.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Türkiye.
| | - Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Türkiye
| | - Sema Uslu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
5
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The role of ferroptosis in environmental pollution-induced male reproductive system toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhou Y, Yu H, Li Q, Kong L, Liu S, Xu C. Characterization of piRNAs in Diploid and Triploid Pacific Oyster Gonads: Exploring Their Potential Roles in Triploid Sterility. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1017-1029. [PMID: 39073646 DOI: 10.1007/s10126-024-10351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements, germ cell development, and gametogenesis. Triploid Pacific oysters (Crassostrea gigas) are vital in the oyster aquaculture industry due to reduced fertility and rapid growth. This study integrates piRNA and mRNA expression analyses to elucidate their potential contributions to the sterility of triploid C. gigas. Bioinformatics analysis reveals a distinct U-bias at the 5' terminal of oyster piRNAs. The abundance of piRNA clusters is reduced in triploid gonads compared to diploid gonads, particularly in sterile gonads, with a significant decrease in piRNA numbers. A specific piRNA cluster is annotated with the PPP4R1 gene, which is downregulated in infertile female triploids and exhibits a negative correlation with three piRNAs within the cluster. Differential expression analysis identified 46 and 88 piRNAs in female and male comparison groups, respectively. In female sterile triploids, the expression of three target genes of differentially expressed piRNAs associated with cell division showed downregulation, suggesting the potential roles of piRNAs in the regulation of cell division-related genes, contributing to the gonad arrest observed in female triploid oysters. In male triploid oysters, piRNAs potentially interact with the target genes associated with spermatogenesis, including TSSK4, SPAG17, and CCDC81. This study provides a concise overview of piRNAs expression in oyster gonads, offering insights into the regulatory role of piRNAs in triploid sterility.
Collapse
Affiliation(s)
- Yaru Zhou
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
| |
Collapse
|
7
|
Wang Q, Li H, Wu T, Yu B, Cong H, Shen Y. Nanodrugs based on co-delivery strategies to combat cisplatin resistance. J Control Release 2024; 370:14-42. [PMID: 38615892 DOI: 10.1016/j.jconrel.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cisplatin (CDDP), as a broad-spectrum anticancer drug, is able to bind to DNA and inhibit cell division. Despite the widespread use of cisplatin since its discovery, cisplatin resistance developed during prolonged chemotherapy, similar to other small molecule chemotherapeutic agents, severely limits its clinical application. Cisplatin resistance in cancer cells is mainly caused by three reasons: DNA repair, decreased cisplatin uptake/increased efflux, and cisplatin inactivation. In earlier combination therapies, the emergence of multidrug resistance (MDR) in cancer cells prevented the achievement of the desired therapeutic effect even with the accurate combination of two chemotherapeutic drugs. Therefore, combination therapy using nanocarriers for co-delivery of drugs is considered to be ideal for alleviating cisplatin resistance and reducing cisplatin-related toxicity in cancer cells. This article provides an overview of the design of cisplatin nano-drugs used to combat cancer cell resistance, elucidates the mechanisms of action of cisplatin and the pathways through which cancer cells develop resistance, and finally discusses the design of drugs and related carriers that can synergistically reduce cancer resistance when combined with cisplatin.
Collapse
Affiliation(s)
- Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio-nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
8
|
Li Y, Zhou Y, Ma T, Dai J, Li H, Pan Q, Luo W. Research progress on the role of autophagy in the development of varicocele. Reprod Biol 2024; 24:100894. [PMID: 38776742 DOI: 10.1016/j.repbio.2024.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Varicocele (VC) is a common cause of infertility in men. Pathophysiological changes caused by VC, such as testicular hypoxia, high temperatures, oxidative stress, abnormal reproductive hormones, and Cd accumulation, can induce autophagy, thus affecting the reproductive function in patients with this condition. Autophagy regulators can be classified as activators or inhibitors. Autophagy activators upregulate autophagy, reduce the damage to the testis and epididymis, inhibit spermatogenic cell apoptosis, and protect fertility. In contrast, autophagy inhibitors block autophagy and aggravate the damage to the reproductive functions. Therefore, elucidating the role of autophagy in the occurrence, development, and regulation of VC may provide additional therapeutic options for men with infertility and VC. In this review, we briefly describe the progress made in autophagy research in the context of VC.
Collapse
Affiliation(s)
- Yunqing Li
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yulan Zhou
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianzhong Ma
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaze Dai
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hongbo Li
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wenying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
9
|
Cheng A, Luo H, Fan B, Xiang Q, Nie Z, Feng S, Qiao Y, Wu Y, Zhu Q, Liu R, Song X, Li X, Zhang J. Fluoride induces pyroptosis via IL-17A-mediated caspase-1/11-dependent pathways and Bifidobacterium intervention in testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172036. [PMID: 38554964 DOI: 10.1016/j.scitotenv.2024.172036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Fluoride, a ubiquitous environmental pollutant, poses a significant public health threat. Our previous study revealed a correlation between fluoride-induced testicular pyroptosis and male reproductive dysfunction. However, the underlying mechanism remains unclear. Wild-type and interleukin 17A knockout mice were exposed to sodium fluoride (100 mg/L) in deionized drinking water for 18 weeks. Bifidobacterium intervention (1 × 109 CFU/mL, 0.2 mL/day, administered via gavage) commenced in the 10th week. Sperm quality, testicular morphology, key pyroptosis markers, spermatogenesis key genes, IL-17A signaling pathway, and pyroptosis pathway related genes were determined. The results showed that fluoride reduced sperm quality, damaged testicular morphology, affected spermatogenesis, elevated IL-17A levels, and induced testicular pyroptosis. Bifidobacterium intervention alleviated adverse reproductive outcomes. Fluoride-activated testicular pyroptosis through both typical and atypical pathways, with IL-17A involvement. Bifidobacterium supplementation attenuated pyroptosis by downregulating IL-17A, inhibiting NLRP3 and PYRIN-mediated caspase-1 and caspase-11 dependent pathways in testis, thereby alleviating fluoride-induced male reproductive damage. In summary, this study uncovers the mechanism underlying fluorine-induced testicular pyroptosis and illustrates the novel protecting feature of Bifidobacterium against fluoride-induced harm to male reproduction, along with its potential regulatory mechanism. These results provide fresh perspectives on treating male reproductive dysfunction resulting from fluoride or other environmental toxins.
Collapse
Affiliation(s)
- Ao Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Bingchao Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qing Xiang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhaochen Nie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuang Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaochao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
10
|
Tabatabaee F, Darabi S, Soltani R, Aghajanpour F, Afshar A, Abbaszadeh HA, Rajabi-Maham H. Therapeutic Effects of Exosome Therapy and Photobiomodulation Therapy on the Spermatogenesis Arrest in Male Mice After Scrotum Hyperthermia. J Lasers Med Sci 2024; 15:e3. [PMID: 38655046 PMCID: PMC11033855 DOI: 10.34172/jlms.2024.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/25/2023] [Indexed: 04/26/2024]
Abstract
Introduction: In men, several factors cause infertility, among which we can mention damage to sperm due to high temperature. So far, various treatments have been proposed for it, but they have not been highly effective. The current study aimed to evaluate the effect of exosome therapy (EXO) and photobiomodulation therapy (PBMT) on spermatogenesis arrest in male mice after scrotum hyperthermia. Methods: In this experimental study, the animals were divided into four groups: control, scrotal hyperthermia, scrotal hyperthermia+EXO (100 μL/d) (mice were treated for 30 days), scrotal hyperthermia+PBMT (laser of 0.03 J/cm2 for 30 seconds/for 30 days). Hyperthermia was induced by exposure to the temperature of 43 °C for 20 minute every day for 5 times. After 6 weeks, the animals were sacrificed. Results: The treated groups showed a significant increase in sperm parameters, as compared to the hyperthermic groups. Moreover, these favorable effects were observed in relation to the volume of testicular tissue, the number of germ cells, Leydig cells and Sertoli cells, and the level of testosterone. Research on antioxidants showed a significant reduction in oxidized glutathione (GSSG) and reactive oxygen species (ROS) in the treatment groups in comparison to the hyperthermia group (P<0.001). Also, there has been a significant increase in the amount of hydrogen peroxide enzyme observed in the hyperthermia group as opposed to the treatment group (P<0.001). Conclusion: These findings show that EXO and PBMT can improve spermatogenesis caused by hyperthermia, reduce ROS and GSSG, and increase glutathione (GSH) and sperm quality.
Collapse
Affiliation(s)
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Soltani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhroddin Aghajanpour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Rajabi-Maham
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Yuan W, Sun Z, Ji G, Hu H. Emerging roles of ferroptosis in male reproductive diseases. Cell Death Discov 2023; 9:358. [PMID: 37770442 PMCID: PMC10539319 DOI: 10.1038/s41420-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation that leads to excessive lipid peroxidation in different cells. Ferroptosis is distinct from other forms of cell death and is associated with various diseases. Iron is essential for spermatogenesis and male reproductive function. Therefore, it is not surprising that new evidence supports the role of ferroptosis in testicular injury. Although the molecular mechanism by which ferroptosis induces disease is unknown, several genes and pathways associated with ferroptosis have been linked to testicular dysfunction. In this review, we discuss iron metabolism, ferroptosis, and related regulatory pathways. In addition, we analyze the endogenous and exogenous factors of ferroptosis in terms of iron metabolism and testicular dysfunction, as well as summarize the relationship between ferroptosis and male reproductive dysfunction. Finally, we discuss potential strategies to target ferroptosis for treating male reproductive diseases and provide new directions for preventing male reproductive diseases.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institute of Life Sciences, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
12
|
Dong F, Ma Y, Chen XF. Identification of a novel pyroptosis-related gene signature in human spermatogenic dysfunction. J Assist Reprod Genet 2023; 40:2251-2266. [PMID: 37553495 PMCID: PMC10440330 DOI: 10.1007/s10815-023-02892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE To reveal the underlying roles that pyroptosis-related genes (PRGs) played in human spermatogenic dysfunction. METHODS One discovery set and three validation sets were employed to inspect the previously reported 33 PRGs in the human testis with different status of spermatogenesis. PRGs that differentially expressed in all sets were considered as key differentially expressed pyroptosis-related genes (PR-DEGs). The relationships between key PR-DEGs and samples' clinicopathological, therapeutic, and immune patterns were respectively studied. Single-cell RNA sequencing (scRNS-seq) analyses were conducted to show the expression changes and related mechanisms of key PR-DEGs at a single-cell resolution. RESULTS CASP4 and GPX4 were identified as two key PR-DEGs. These two genes were significantly dysregulated in spermatogenic dysfunctional samples, but with opposite tendency. CASP4 was negatively correlated with Johnsen scores but positively correlated with follicle-stimulating hormone (FSH) levels (all p < 0.05), while GPX4 exhibited significant positive correlations with Johnsen scores and negative relevance with FSH. For treatments, both molecules showed a prospective value of being predictors for sperm retrieval surgeries. Moreover, CASP4 and GPX4 were potential immunoregulators in the testicular immune microenvironment and showed significant correlations to testicular macrophages and mast cell infiltration. In scRNA-seq analyses, GPX4 was highly expressed in germ cells, which therefore suffered a sharp reduction with the loss of germ cells in spermatogenic dysfunction. On the other hand, CASP4 were basically somatic cell-derived, and the proportion of CASP4-positive Leydig cells significantly increased in disease testes (p = 0.0001). CONCLUSION In all, we revealed two key PRGs of human testes that might be functional in spermatogenic dysfunction.
Collapse
Affiliation(s)
- Fan Dong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
- Shanghai Human Sperm Bank, Shanghai, China.
| |
Collapse
|
13
|
Zhu B, Niu Y, Niu L, Zhang X, Liu F. Exploring the application of sildenafil for high-fat diet-induced erectile dysfunction based on interleukin-18-mediated NLRP3/Caspase-1 signaling pathway. Sex Med 2023; 11:qfad044. [PMID: 37636019 PMCID: PMC10460117 DOI: 10.1093/sexmed/qfad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Background Inflammation is a key risk factor for heart disease and has also been linked to erectile dysfunction (ED). Sildenafil is a phosphodiesterase type 5 inhibitor with a strong antioxidant effect. Interleukin (IL)-18 is a proinflammatory factor. Excessive production and release of IL-18 disrupt the balance between IL-18 and IL-18 binding proteins in certain inflammatory diseases, leading to the occurrence of pathological inflammation. Aim We evaluated the effects of sildenafil on erectile function in a rat model of high-fat diet-induced ED. Methods Male Sprague Dawley rats (6 weeks old) were divided into 5 groups: control, ED, sildenafil, IL-18, and IL-18 + sildenafil. Subsequently, intracavernous pressure and mean arterial pressure were used to assess the erectile function of these rats. The expression of endothelial nitric oxide synthase, pyroptosis factors, and the ratio of smooth muscle cells and collagen fibers were evaluated in the serum and corpora tissue. Outcomes Exploring the role and mechanism of sildenafil in ED through NLRP3-mediated pyroptosis pathway. Results In comparison to the ED and IL-18 groups, there were statistically significant increases in the ratio of intracavernous pressure to mean arterial pressure, endothelial nitric oxide synthase expression, and the ratio of smooth muscle cells to collagen fibers following sildenafil intervention (P < .05). The sildenafil group and IL-18 + sildenafil group also showed statistically significant decreases the expression of NLRP3, caspase-1, and gasdermin D (P < .05). Clinical Implications Sildenafil can improve erectile dysfunction by inhibiting inflammation. Strengths and Limitations Strengths are that the relationship between pyroptosis and ED has been verified through in vitro and in vivo experiments. The limitation is that the conclusions drawn from animal and cells experiments need to be confirmed in clinical research. Conclusion Sildenafil may reduce the effect of IL-18-induced inflammation in high-fat diet-induced ED rats through NLRP3/caspase-1 pyroptosis pathway.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Yangjiu Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Lipan Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Xijia Zhang
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| |
Collapse
|
14
|
Bui-Le TN, Hoang-Tan Q, Hoang-Viet H, Truong-Thi BP, Nguyen-Thanh T. Protective Effect of Curculigo orchioides Gaertn. Extract on Heat Stress-Induced Spermatogenesis Complications in Murine Model. Curr Issues Mol Biol 2023; 45:3255-3267. [PMID: 37185736 PMCID: PMC10136419 DOI: 10.3390/cimb45040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Curculigo orchioides Gaertn. is a precious herb used in traditional medicine systems in Asian countries for various health benefits. This study investigated the potential protective effects of C. orchioides extract on reproductive health under heat stress conditions in male mice. Forty-eight mice were divided into eight groups, control condition (C group), C. orchioides extract at the dosages of 100, 200, and 400 mg/kg/day (C100, C200, C400 group), 40 °C heat exposure (H group), and combined 40 °C heat exposure and C. orchioides extract at the dosages of 100, 200, and 400 mg/kg/day (HC100, HC200, HC400 group). The result shows that the mice that received only C. orchioides extract without heat stress do not have a significant change in histological structure and testosterone level. The histological analysis of testicular tissue showed that heat stress conditions reduced reproductive function and inhibited the spermatogenesis of male mice. The C. orchioides rhizome extract treatment attenuated the heat stress-induced spermatogenesis complications in the murine model. Mice in the heat-stress group treated with C. orchioides extract had increased spermatogenic cells and spermatozoa compared with mice exposed to heat without C. orchioides treatment. Moreover, the aqueous extract of C. orchioides rhizome enhanced the serum total testosterone levels in heat-exposed mice. In conclusion, the study findings validate that C. orchioides is effective against heat stress-induced spermatogenesis complications in the murine model.
Collapse
Affiliation(s)
- Thanh-Nhan Bui-Le
- Faculty of Basic Science, University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam
- Faculty of Biology, University of Sciences, Hue University, Hue 49000, Vietnam
| | - Quang Hoang-Tan
- Institute of Biotechnology, Hue University, Hue 49000, Vietnam
| | - Huong Hoang-Viet
- Thua Thien Hue Department of Science and Technology, Hue 49000, Vietnam
| | | | - Tung Nguyen-Thanh
- Faculty of Basic Science, University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam
- Institute of Biomedicine, University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam
| |
Collapse
|
15
|
Sun TC, Li DM, Yu H, Song LL, Jia YJ, Lin L, Zhou SJ. Bilateral varicocele leads to ferroptosis, pyroptosis and necroptosis of human spermatozoa and affects semen quality in infertile men. Front Cell Dev Biol 2023; 11:1091438. [PMID: 36819092 PMCID: PMC9932668 DOI: 10.3389/fcell.2023.1091438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose: This study explored the effects of bilateral varicocele on male semen quality in infertile men and the molecular mechanisms involving ferroptosis, pyroptosis and necroptosis signaling pathways. Methods: Totally, 20 healthy males and 26 patients with bilateral varicocele receiving infertility treatment were enrolled. Semen samples were collected. Basic semen parameters, acrosome integrity and membrane integrity, mitochondrial membrane potential (MMP) and apoptosis rate were compared. Levels of reactive oxygen species (ROS), iron, glutathione (GSH), total superoxide dismutase (T-SOD), and, Catalase (CAT), were detected in human seminal plasma. Relative mRNA expression of Ca 2+-independent phospholipases A2 beta (iPLA 2β), P53, Zinc finger E-box binding homeobox 1 (ZEB1) and GSH-dependent peroxidase 4 (GPX4) were evaluated. Relative protein expression was determined for GPX4, receptor interacting serine/threonine kinase 1 (RIPK1) and receptor interacting serine/threonine kinase 3 (RIPK3), as well as pyroptosis markers of Gasdermin E (GSDME) and heat shock protein 90 (HSP 90). Results: The results revealed that the bilateral varicocele group had significantly higher abnormalities (sperm progressive rate and sperm motility) compared to the control group. Meanwhile, compared to control group, GSH, T-SOD, and CAT levels were reduced in the bilateral varicocele group (p < 0.05). However, the level of ROS and iron were significantly increased (p < 0.05). Relative mRNA expression of P53, iPLA 2β, ZEB1, and GPX4 were reduced. In addition, ROS exposure activated ferroptosis-related signal pathways. RIPK1, RIPK3, GSDME and HSP 90 were increased in bilateral varicocele group. ROS exposure affected signaling pathways related to ferroptosis, necrosis and pyroptosis in human spermatozoa. Conclusion: Bilateral varicocele leads to ferroptosis, pyroptosis and necroptosis of human spermatozoa and affects semen quality in infertile men.
Collapse
Affiliation(s)
- Tie Cheng Sun
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China,HLA Laboratory, Beijing Red Cross Blood Center, Beijing, China,*Correspondence: Tie Cheng Sun, ; Li Lin, ; Shan Jie Zhou,
| | - Dong Mei Li
- HLA Laboratory, Beijing Red Cross Blood Center, Beijing, China
| | - Hong Yu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Ling Li Song
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Yan Jun Jia
- HLA Laboratory, Beijing Red Cross Blood Center, Beijing, China
| | - Li Lin
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China,*Correspondence: Tie Cheng Sun, ; Li Lin, ; Shan Jie Zhou,
| | - Shan Jie Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China,*Correspondence: Tie Cheng Sun, ; Li Lin, ; Shan Jie Zhou,
| |
Collapse
|
16
|
Yang X, Chen Y, Song W, Huang T, Wang Y, Chen Z, Chen F, Liu Y, Wang X, Jiang Y, Zhang C. Review of the Role of Ferroptosis in Testicular Function. Nutrients 2022; 14:5268. [PMID: 36558426 PMCID: PMC9785324 DOI: 10.3390/nu14245268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Iron is an important metal element involved in the regulation of male reproductive functions and has dual effects on testicular tissue. A moderate iron content is necessary to maintain testosterone synthesis and spermatogenesis. Iron overload can lead to male reproductive dysfunction by triggering testicular oxidative stress, lipid peroxidation, and even testicular ferroptosis. Ferroptosis is an iron-dependent form of cell death that is characterized by iron overload, lipid peroxidation, mitochondrial damage, and glutathione peroxidase depletion. This review summarizes the regulatory mechanism of ferroptosis and the research progress on testicular ferroptosis caused by endogenous and exogenous toxicants. The purpose of the present review is to provide a theoretical basis for the relationship between ferroptosis and male reproductive function. Some toxic substances or danger signals can cause male reproductive dysfunction by inducing testicular ferroptosis. It is crucial to deeply explore the testicular ferroptosis mechanism, which will help further elucidate the molecular mechanism of male reproductive dysfunction. It is worth noting that ferroptosis does not exist alone but rather coexists with other forms of cell death (such as apoptosis, necrosis, and autophagic death). Alleviating ferroptosis alone may not completely reverse male reproductive dysfunction caused by various risk factors.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhong Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Jeremy M, Gurusubramanian G, Kharwar RK, Roy VK. Evaluation of a single dose of intra-testicular insulin treatment in heat-stressed mice model. Andrologia 2022; 54:e14603. [PMID: 36156807 DOI: 10.1111/and.14603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/25/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin plays important role in testicular functions such as germ cell proliferation and steroidogenesis, despite its conventional role as a hypoglycaemic agent. It is also well known that testicular activity is severely get affected by heat stress and heat stress induces testicular pathogenesis. The effect of insulin on heat-induced testicular impairment has not been investigated. Thus, it is hypothesized that insulin might modulate testicular activity in a heat-stressed model. Experimental mice were separated into 4 groups; the first group was the normal control (CN), and the second group was subjected to heat stress (HS) by submerging the lower body part in a thermostatically controlled water bath maintained at 43°C for 15 min. The third and fourth groups were treated with a single dose of intra-testicular insulin (0.6 IU/mice) before and after heat stress. Animal tissue samples were collected after 14 days of heat treatment. Insulin treatment did not improve the sperm parameters; however, both insulin pre and post-treatment improved the markers of spermatogenesis such as Johnsen score, germinal epithelium height and the number of stages VII/VIII. The histoarchitecture of testis also showed amelioration from heat-induced pathogenesis in the insulin-treated groups. Insulin treatment has also increased the proliferation of germ cells (increased PCNA and GCN), survival (Bcl2), and decreased apoptosis (active caspase-3). Furthermore, insulin treatment decreased MDA levels, without pronounced effects on the activities of antioxidant enzymes. Heat stress also decreased the circulating testosterone and oestrogen levels, and insulin treatment significantly increased oestrogen levels only. Although testosterone showed an increasing trend, it was insignificant. The expression of aromatase, AR, ER-α, and ER-β was down regulated by heat-stress and insulin treatment up regulated these markers. In conclusion, our results showed the amelioration of heat-induced testicular impairment by pre and post-intra-testicular insulin treatments. Insulin-associated improvements in the pre-and post-treatment groups suggested a preventive mechanism of insulin against heat stress in the testis.
Collapse
|