1
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
2
|
Jawich K, Hadakie R, Jamal S, Habeeb R, Al Fahoum S, Ferlin A, De Toni L. Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues. Curr Protein Pept Sci 2024; 25:215-225. [PMID: 37937553 DOI: 10.2174/0113892037268414231017074054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named "osteokines", possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.
Collapse
Affiliation(s)
- Kenda Jawich
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Rana Hadakie
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Souhaib Jamal
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Rana Habeeb
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Sahar Al Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Jawich K, Rocca MS, Al Fahoum S, Alhalabi M, Di Nisio A, Foresta C, Ferlin A, De Toni L. RS 2247911 polymorphism of GPRC6A gene and serum undercarboxylated-osteocalcin are associated with testis function. J Endocrinol Invest 2022; 45:1673-1682. [PMID: 35482214 DOI: 10.1007/s40618-022-01803-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Undercarboxylated-Osteocalcin (ucOCN), acting on its putative receptor GPRC6A, was shown to stimulate testosterone (T) production by Leydig cells in rodents, in parallel with the hypothalamus-pituitary-gonadal axis (HPG) mediated by luteinizing hormone (LH). The aim of this cross-sectional study was to evaluate the association among serum ucOCN, rs2247911 polymorphism of GPRC6A gene and the endocrine/semen pattern in a cohort of infertile males, possibly identifying an involvement of the ucOCN-GPRC6A axis on testis function. METHODS 190 males, including 74 oligozoospermic subjects, 58 azoosperminc patients and 58 normozoospermic controls, were prospectively recruited at the Orient Hospital for Infertility, Assisted Reproduction and Genetics in Syria (Study N. 18FP), from July 2018 to June 2020. Outpatient evaluation included the clinical history, anthropometrics and a fasting blood sampling for hormonals, serum OCN (both carboxylated and undercarboxylated), glycemic and lipid profile and screening for rs2247911 GPRC6A gene polymorphism. RESULTS Higher serum ucOCN associated with higher T and HDL-cholesterol (respectively: r = 0.309, P < 0.001 and r = 0.248, P = 0.001), and with lower FSH (r = - 0.327, P < 0.001) and LDL-cholesterol (r = - 0.171; P = 0.018). Patients bearing the GG genotype of rs2247911 had higher sperm count compared to GA genotype (P = 0.043) and, compared to both AG and AA genotypes, had higher serum T (P = 0.004, P = 0.001) and lower triglycerides levels (P = 0.002, P < 0.001). Upon normalization for LH levels and body mass index, rs2274911 and ucOCN were significantly associated with higher serum T at linear stepwise regression analysis (P = 0.013, P = 0.007). CONCLUSIONS Our data suggest the involvement of ucOCN-GPRC6A axis in the regulation of T production by the testis, subsidiary to HPG.
Collapse
Affiliation(s)
- K Jawich
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - M Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padua, Italy
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padua, Italy
| | - S Al Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic.
| | - M Alhalabi
- Department of Embryology and Reproductive Medicine, Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padua, Italy
| | - C Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padua, Italy
| | - A Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padua, Italy
| | - L De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padua, Italy
| |
Collapse
|
4
|
Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. OBESITY AND METABOLISM 2022; 19:332-339. [DOI: 10.14341/omet12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Irisin is a polypeptide hormone of muscle tissue (myokine), the synthesis and secretion of which increase against the background of physical exertion, which plays a significant role in the metabolism of fat, muscle and bone tissues. It is known that irisin promotes the transformation of white adipose tissue into brown adipose tissue. It has also been experimentally proven that the introduction of irisin contributed to an increase in bone mass and the prevention of osteoporosis and muscular atrophy. There are works indicating a positive effect of irisin in the functioning of bone, fat and muscle tissues in humans. Diabetes mellitus (DM) is an independent risk factor for osteoporotic fractures and the development of specific diabetic myopathy, at the cellular level similar to the aging of muscle tissue, and type 2 diabetes is also associated with the presence of obesity. Thus, it is of particular interest to study the effect of irisin on the state of bone, muscle and adipose tissues and glucose homeostasis in patients with diabetes. This literature review highlights the biological functions of irisin in healthy people and patients with DM.
Collapse
|
5
|
Yi G, Zhang S, Ma Y, Yang X, Huo F, Chen Y, Yang B, Tian W. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res Ther 2022; 13:41. [PMID: 35093186 PMCID: PMC8800263 DOI: 10.1186/s13287-022-02721-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The regeneration of bone loss that occurs after periodontal diseases is a significant challenge in clinical dentistry. Extracellular vesicles (EVs)-based cell-free regenerative therapies represent a promising alternative for traditional treatments. Developmental biology suggests matrix vesicles (MVs), a subtype of EVs, contain mineralizing-related biomolecules and play an important role in osteogenesis. Thus, we explore the therapeutic benefits and expect to find an optimized strategy for MV application. Methods Healthy human dental follicle cells (DFCs) were cultured with the osteogenic medium to generate MVs. Media MVs (MMVs) were isolated from culture supernatant, and collagenase-released MVs (CRMVs) were acquired from collagenase-digested cell suspension. We compared the biological features of the two MVs and investigated their induction of cell proliferation, migration, mineralization, and the modulation of osteogenic genes expression. Furthermore, we investigated the long-term regenerative capacity of MMVs and CRMVs in an alveolar bone defect rat model. Results We found that both DFC-derived MMVs and CRMVs effectively improved the proliferation, migration, and osteogenic differentiation of DFCs. Notably, CRMVs showed better bone regeneration capabilities. Compared to MMVs, CRMVs-induced DFCs exhibited increased synthesis of osteogenic marker proteins including ALP, OCN, OPN, and MMP-2. In the treatment of murine alveolar bone defects, CRMV-loaded collagen scaffold brought more significant therapeutic outcomes with less unhealing areas and more mature bone tissues in comparison with MMVs and acquired the effects resembling DFCs-based treatment. Furthermore, the western blotting results demonstrated the activation of the PLC/PKC/MAPK pathway in CRMVs-induced DFCs, while this cascade was inhibited by MMVs. Conclusions In summary, our findings revealed a novel cell-free regenerative therapy for repairing alveolar bone defects by specific MV subtypes and suggest that PLC/PKC/MAPK pathways contribute to MVs-mediated alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02721-6.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Wu Q, Yamawaki I, Taguchi Y, Shiomi K, Kimura D, Takahashi T, Umeda M. Glucose Affects the Quality and Properties of Hard Tissue in Diabetes Mellitus Model. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qingchao Wu
- Department of Periodontology, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University
| | | | - Kei Shiomi
- Department of Periodontology, Osaka Dental University
| | | | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
7
|
Hemm F, Fijak M, Belikan J, Kampschulte M, El Khassawna T, Pilatz A, Heiss C, Lips KS. Bone Status in a Mouse Model of Experimental Autoimmune-Orchitis. Int J Mol Sci 2021; 22:7858. [PMID: 34360623 PMCID: PMC8346031 DOI: 10.3390/ijms22157858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Investigations in male patients with fertility disorders revealed a greater risk of osteoporosis. The rodent model of experimental autoimmune-orchitis (EAO) was established to analyze the underlying mechanisms of male infertility and causes of reduced testosterone concentration. Hence, we investigated the impact of testicular dysfunction in EAO on bone status. Male mice were immunized with testicular homogenate in adjuvant to induce EAO (n = 5). Age-matched mice were treated with adjuvant alone (adjuvant, n = 6) or remained untreated (control, n = 7). Fifty days after the first immunization specimens were harvested. Real-time reverse transcription-PCR indicated decreased bone metabolism by alkaline phosphatase and Cathepsin K as well as remodeling of cell-contacts by Connexin-43. Micro computed tomography demonstrated a loss of bone mass and mineralization. These findings were supported by histomorphometric results. Additionally, biomechanical properties of femora in a three-point bending test were significantly altered. In summary, the present study illustrates the induction of osteoporosis in the investigated mouse model. However, results suggest that the major effects on bone status were mainly caused by the complete Freund's adjuvant rather than the autoimmune-orchitis itself. Therefore, the benefit of the EAO model to transfer laboratory findings regarding bone metabolism in context with orchitis into a clinical application is limited.
Collapse
Affiliation(s)
- Fabian Hemm
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen, Rudolf-Buchheim-Str. 7, 35392 Giessen, Germany;
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany;
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Aulweg 123, 35385 Giessen, Germany;
| | - Jan Belikan
- Laboratory of Experimental Radiology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (M.K.)
| | - Marian Kampschulte
- Laboratory of Experimental Radiology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (M.K.)
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany;
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, University Hospital of Giessen, Rudolf-Buchheim-Straße 7, 35392 Giessen, Germany;
| | - Christian Heiss
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen, Rudolf-Buchheim-Str. 7, 35392 Giessen, Germany;
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany;
| | - Katrin Susanne Lips
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany;
| |
Collapse
|
8
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
9
|
Crespo D, Assis LHC, Zhang YT, Safian D, Furmanek T, Skaftnesmo KO, Norberg B, Ge W, Choi YC, den Broeder MJ, Legler J, Bogerd J, Schulz RW. Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Commun Biol 2021; 4:204. [PMID: 33589679 PMCID: PMC7884674 DOI: 10.1038/s42003-021-01708-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.
Collapse
Affiliation(s)
- Diego Crespo
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands ,grid.10917.3e0000 0004 0427 3161Present Address: Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Luiz H. C. Assis
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Yu Ting Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, PR China ,grid.449133.80000 0004 1764 3555Present Address: Institute of Oceanography, Minjiang University, Fuzhou, PR China
| | - Diego Safian
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Experimental Zoology Group and Aquaculture and Fisheries Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | - Tomasz Furmanek
- grid.10917.3e0000 0004 0427 3161Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- grid.10917.3e0000 0004 0427 3161Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Wei Ge
- grid.437123.00000 0004 1794 8068Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Yung-Ching Choi
- grid.437123.00000 0004 1794 8068Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Marjo J. den Broeder
- grid.5477.10000000120346234Division of Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Juliette Legler
- grid.5477.10000000120346234Division of Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan Bogerd
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger W. Schulz
- grid.5477.10000000120346234Reproductive Biology Group, Division Developmental Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands ,grid.10917.3e0000 0004 0427 3161Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
10
|
Storbeck KH, Mostaghel EA. Canonical and Noncanonical Androgen Metabolism and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:239-277. [PMID: 31900912 DOI: 10.1007/978-3-030-32656-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Androgens are critical drivers of prostate cancer. In this chapter we first discuss the canonical pathways of androgen metabolism and their alterations in prostate cancer progression, including the classical, backdoor and 5α-dione pathways, the role of pre-receptor DHT metabolism, and recent findings on oncogenic splicing of steroidogenic enzymes. Next, we discuss the activity and metabolism of non-canonical 11-oxygenated androgens that can activate wild-type AR and are less susceptible to glucuronidation and inactivation than the canonical androgens, thereby serving as an under-recognized reservoir of active ligands. We then discuss an emerging literature on the potential non-canonical role of androgen metabolizing enzymes in driving prostate cancer. We conclude by discussing the potential implications of these findings for prostate cancer progression, particularly in context of new agents such as abiraterone and enzalutamide, which target the AR-axis for prostate cancer therapy, including mechanisms of response and resistance and implications of these findings for future therapy.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Geriatric Research, Education and Clinical Center S-182, VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|
11
|
Coskun G, Sencar L, Tuli A, Saker D, Alparslan MM, Polat S. Effects of Osteocalcin on Synthesis of Testosterone and INSL3 during Adult Leydig Cell Differentiation. Int J Endocrinol 2019; 2019:1041760. [PMID: 31558901 PMCID: PMC6735183 DOI: 10.1155/2019/1041760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Proliferation and differentiation of adult Leydig cells are mainly completed in puberty. In many studies, apart from normal postnatal development process, it is widely indicated that, through administrating EDS, Leydig cell population is eliminated and regenerated. It is believed that osteocalcin released from osteoblasts, which is responsible for modulating bone metabolism, induces testosterone production in Leydig cells, independent of the HPG axis. In addition, INSL3 produced by Leydig cells, such as testosterone, plays a critical role in bone metabolism and is known to reflect the development process and functional capacities of Leydig cells. This study is aimed at investigating OC-mediated testosterone regulation and INSL3 synthesis during differentiation of adult Leydig cells that are independent of LH. For this purpose, male rats were divided into 2 groups: prepubertal normal rats and adult EDS-injected rats. Each group was divided into 4 subgroups in which GnRH antagonist or OC was applied. After adult Leydig cells completed their development, testicular tissue samples obtained from the sacrificed rats were examined by light-electron microscopic, immunohistochemical, and biochemical methods. Slight upregulation in 3βHSD, INSL3, and GPRC6A expressions along with the increase in serum testosterone levels was observed in groups treated with osteocalcin against GnRH antagonist. In addition, biochemical and microscopic findings in osteocalcin treated groups were similar to those in control groups. While there was no significant difference in the number of Leydig cells reported, the presence of a significant upregulation in INSL3 and GPRC6A expressions and the increase in serum testosterone and ucOC levels were observed. After evaluation of findings altogether, it is put forward that, for the first time in this study, although osteocalcin treatment made no significant difference in the number of Leydig cells, it increased the level of testosterone through improving the function of existing adult Leydig cells during normal postnatal development process and post-EDS regeneration. This positive correlation between osteocalcin-testosterone and osteocalcin-INSL3 is concluded to be independent of LH at in vivo conditions.
Collapse
Affiliation(s)
- Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana TR01330, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana TR01330, Turkey
| | - Abdullah Tuli
- Department of Biochemistry, Faculty of Medicine, Cukurova University, Adana TR01330, Turkey
| | - Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana TR01330, Turkey
| | | | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana TR01330, Turkey
| |
Collapse
|
12
|
Solhjoo S, Akbari M, Toolee H, Mortezaee K, Mohammadipour M, Nematollahi-Mahani SN, Shahrokhi A, Sayadi M, Rastegar T. Roles for osteocalcin in proliferation and differentiation of spermatogonial cells cocultured with somatic cells. J Cell Biochem 2018; 120:4924-4934. [PMID: 30302795 DOI: 10.1002/jcb.27767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 01/29/2023]
Abstract
Spermatogonial cells (SCs) are key cells for spermatogenesis. These cells are affected by paracrine signals originated from nearby somatic cells, among them Leydig cells have receptors for osteocalcin, a hormone known for exerting positive roles in the promotion of spermatogenesis. The aim of this study was to evaluate roles for osteocalcin on SCs proliferative and differentiation features after coculture with Leydig cells. SCs and Leydig cells were isolated from neonate NMRI offspring mice and adult NMRI mice, respectively. SCs population were then enriched in a differential attachment technique and assessed for morphological features and identity. Then, SCs were cocultured with Leydig cells and incubated with osteocalcin for 4 weeks. Evaluation of proliferation and differentiation-related factors were surveyed using immunocytochemistry (ICC), Western blot, and quantitative real-time polymerase chain reaction (PCR). Finally, the rate of testosterone release to the culture media was measured at the end of 4th week. Morphological and flow cytometry results showed that the SCs were the population of cells able to form colonies and to express ID4, α6-, and β1-integrin markers, respectively. Leydig cells were also able to express Gprc6α as a specific marker for the cells. Incubation of SCs/Leydig coculture with osteocalcin has resulted in an increase in the rate of expressions for differentiation-related markers. Levels of testosterone in the culture media of SCs/Leydig was positively influenced by osteocalcin. It could be concluded that osteocalcin acts as a positive inducer of SCs in coculture with Leydig cells probably through stimulation of testosterone release from Leydig cells and associated signaling.
Collapse
Affiliation(s)
- Somayeh Solhjoo
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahshid Mohammadipour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Amene Shahrokhi
- Department of Pharmacy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Sayadi
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Gong M, Chi C, Ye J, Liao M, Xie W, Wu C, Shi R, Zhang L. Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum. Colloids Surf B Biointerfaces 2018; 170:201-209. [PMID: 29909312 DOI: 10.1016/j.colsurfb.2018.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Due to the significant role of the periosteum in bone regeneration, we hypothesised that using a specially engineered artificial periosteum could lead to an enhancement in osteogenesis in bone grafts. Herein, we describe our work aimed at fabricating an electrospun fibrous membrane as an artificial periosteum that exhibits flexibility, permeability and osteoinduction. This membrane was designed to cover the complex surface of bone grafts to facilitate and accelerate bone regeneration. The traditional Chinese medicine icariin (ICA) was subsequently introduced into poly (ε-caprolactone) (PCL) /gelatin nanofibers to fabricate an artificial periosteum for the first time. The effects of ICA content on morphology, physical properties, drug release profile, in vitro degradability, biocompatibility and osteogenic differentiation properties were investigated. The ICA-loaded electrospun membranes showed significant improvement in hydrophilicity, high mechanical strength, appropriate degradation rates and excellent biocompatibility. Furthermore, clear enhancement in alkaline phosphatase (ALP) activity, as well as an increase in osteocalcin (OCN) and type collagen I (COL I) expression in MC3T3-E1 cells were detected. Furthermore, we observed clear calcium deposition content in MC3T3-E1 cells cultured on ICA-loaded fibrous matrix. The membrane loaded with 0.05 wt.% ICA displayed properties contributing to cell attachment, proliferation and differentiation. These results indicate the huge potential of this ICA-loaded PCL/gelatin electrospun membrane as a biomimetic artificial periosteum to accelerate bone regeneration.
Collapse
Affiliation(s)
- Min Gong
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Cheng Chi
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jingjing Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meihong Liao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenqi Xie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengai Wu
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Rui Shi
- Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China.
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
14
|
Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 2018; 6:16. [PMID: 29844945 PMCID: PMC5967329 DOI: 10.1038/s41413-018-0019-6] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes, and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin (SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influenceaA osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines" from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin (OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2 (LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain. We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiuling You
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|