1
|
Akande AO, Carter ZA, Stokes KY, Nam HW. Endothelial Neurogranin Regulates Blood-Brain Barrier Permeability via Modulation of the AKT Pathway. Mol Neurobiol 2025; 62:3991-4007. [PMID: 39367201 PMCID: PMC11880131 DOI: 10.1007/s12035-024-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Neurogranin (Ng) expression is a biomarker for Alzheimer's disease. A loss of brain Ng and an increase in CSF Ng positively correlate with cognitive decline. Ng is known to regulate neuronal calcium-calmodulin binding and synaptic plasticity, which are critical for learning/memory. Interestingly, we discovered that Ng is also expressed in mouse and human blood-brain barrier (BBB). However, the role of Ng expression in brain vasculature remains largely undefined. In this study, we investigated the role of Ng expression on neurovascular structure and function using Ng null mice and human cerebral microvascular endothelial (hCMEC/D3) cells. We performed brain clearing and immunolabeling of blood vessels from whole brains and brain slices. Deletion of Ng significantly decreases neurovascular density in mice. Using in vivo permeability assays, we found increased neurovascular permeability in Ng null mice. We also observed significant changes in the expression of tight junction proteins using western blot and immunofluorescent staining. To identify the molecular pathways involved, we carried out label-free proteomics on brain lysates from endothelial-specific Ng knockout mice. Ingenuity Pathway Analysis indicated that the AKT pathway is attenuated in the vasculature of endothelial-specific Ng knockout mice. To validate these in vivo findings, we pharmacologically manipulated AKT signaling in hCMEC/D3 cells and observed that inhibition of AKT activation causes increased permeability. Our results indicate that the loss of Ng expression alters neurovascular structure and permeability, potentially contributing to neurological dysfunction. Therefore, modulating Ng expression in the BBB may offer a novel therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Adesewa O Akande
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Zachary A Carter
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
2
|
Chen Z, Jiang J, Jiang R. A low testosterone level impairs erectile function by increasing endocan expression in rat penile corpus cavernosum. J Sex Med 2024; 21:663-670. [PMID: 38972662 DOI: 10.1093/jsxmed/qdae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND The mechanism by which a state of low testosterone leads to erectile dysfunction (ED) has not been determined. Endocan is a novel marker of endothelial function. However, whether endocan is involved in the regulation of erectile function under low testosterone levels remains unclear. AIM In this study we sought to determine whether a low-testosterone state inhibits erectile function by regulating endocan expression in the endothelial cells of the rat penile corpus cavernosum. METHODS Thirty-six male Sprague-Dawley rats aged 8 weeks were randomly assigned to 6 groups (n = 6 per group) as follows: (1) control, (2) castration, (3) castration + testosterone treatment (treated with 3 mg/kg testosterone propionate per 2 days), (4) control + transfection (4 weeks after castration, injected with lentiviral vector (1 × 108 transduction units/mL, 10 μL), (5) castration + transfection, or (6) castration + empty transfection. One week after the injection, we measured the maximal intracavernous pressure/mean arterial pressure (ICPmax/MAP), serum testosterone and nitric oxide (NO) levels, and the expression of endocan, phospho-endothelial NO synthase (p-eNOS), eNOS, phospho-protein kinase B (p-AKT), and AKT in the rat penile corpus cavernosum. OUTCOMES Under a low-androgen state, the expression of endocan in the rat penile corpus cavernosum was significantly increased, which inhibited the AKT/eNOS/NO signaling pathway and resulted in ED. RESULTS In the castration group, the expression of endocan in the rat penile corpus cavernosum was significantly higher than that in the control group (P < .05). Additionally, the levels of p-AKT/AKT, p-eNOS/eNOS, and NO in the rat penile corpus cavernosum and ICPmax/MAP were significantly lower in the castration group than in the control group (P < .05). In the castration + transfection group compared with the castration group there was a significant decrease in the expression of endocan (P < .05) and an increase in the ratios of p-AKT/AKT, p-eNOS/eNOS, and ICPmax/MAP (P < .05) in the rat penile corpus cavernosum. CLINICAL IMPLICATIONS Downregulating the expression of endocan in the penile corpus cavernosum may be a feasible approach for treating ED caused by hypoandrogenism. STRENGTHS AND LIMITATIONS The results of this study indicte that endocan may affect NO levels and erectile function through multiple signaling pathways, but further experiments are needed to clarify the relationship between endocan and androgens. CONCLUSION A low-testosterone state inhibits the AKT/eNOS/NO signaling pathway by increasing the expression of endocan in the rat penile corpus cavernosum and impairing erectile function in rats. Decreasing the expression of endocan in the penile corpus cavernosum can improve erectile function in rats with low testosterone levels.
Collapse
Affiliation(s)
- Zhaoguo Chen
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
3
|
Wang Y, Jiang R. Androgens and erectile dysfunction: from androgen deficiency to treatment. Sex Med Rev 2024; 12:458-468. [PMID: 38719619 DOI: 10.1093/sxmrev/qeae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Androgens play important roles in regulating the growth and development of the male reproductive system and maintaining libido and erectile function. The specific mechanisms by which androgen deficiency leads to erectile dysfunction (ED) are not yet fully understood. OBJECTIVES To understand the mechanisms and treatment of androgen deficiency-related ED. METHODS A literature search in the past 10 years was conducted in PubMed and Google Scholar to determine the effects of androgen deficiency on erectile function and the treatment of androgen deficiency. RESULTS Androgen deficiency can be caused by hypothalamic-pituitary lesions and injuries, testicular-related diseases and injuries, endocrine and metabolic disorders, the side effects of medication, and age. Androgen deficiency can lead to ED by inhibiting the NOS/NO/cGMP pathway (nitric oxide synthase/nitric oxide/cyclic guanosine monophosphate) and altering the expression of ion channel proteins, as well as by inducing oxidative stress, death, and fibrosis in penile corpus cavernosum cells. Testosterone replacement therapy is effective at improving the serum testosterone levels and erectile function in patients with androgen deficiency. For patients who need to maintain a low androgenic state, erectile function can be improved by lifestyle changes, treatment with phosphodiesterase type 5 inhibitors, low-intensity extracorporeal shock wave therapy, and stem cell therapy. CONCLUSIONS Androgen deficiency can affect the structure and function of the penile corpus cavernosum, leading to ED. Areas of further study include how androgen replacement therapy can improve erectile function and how to improve the maintenance of erectile function in patients with hypoandrogenic status.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Zhou W, Jiang J, Jiang R. A low androgenic state inhibits erectile function by suppressing endothelial glycosides in the penile cavernous tissue of rats. Sex Med 2024; 12:qfae039. [PMID: 38883807 PMCID: PMC11179729 DOI: 10.1093/sexmed/qfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Background The endothelial glycocalyx is an important barrier that protects the structure and function of endothelial cells. Androgen deficiency is a common factor that causes structural and functional impairment of endothelial cells. Aim To investigate changes in the endothelial glycocalyx in the penile corpus cavernosum of the rat with low androgen status and its relationship with erection function. Methods Eighteen 10-week-old Sprague-Dawley male rats were randomly divided into 3 groups (n = 6 each): sham operation, castration, and castration + testosterone replacement. The maximum intracavernosal pressure/mean arterial pressure of the penis was measured after modeling for 4 weeks. The expression levels of endothelial nitric oxide synthase (eNOS), phospho-eNOS, syndecan 1, heparanase, and nitric oxide in penile cavernous tissue and the serum levels of heparan sulfate, hyaluronic acid, tumor necrosis factor α, and interleukin 6 were determined. Transmission electron microscopy was used to observe the ultrastructure of the endothelial glycocalyx in penile tissue. Outcomes The thickness of the endothelial glycocalyx in the penile corpus cavernosum of castrated rats was significantly lower than that of the control group. Results In the castrated rats, the endothelial glycocalyx thickness, syndecan 1 level, ratio of phospho-eNOS to eNOS, nitric oxide level, and maximum intracavernosal pressure/mean arterial pressure (3 V, 5 V) were significantly lower than those in the sham group (P < .05). The expression of heparanase and the serum levels of tumor necrosis factor α and interleukin 6 were significantly higher in the castrated group than in the sham group (P < .05). Clinical Translation Upregulating the expression of the endothelial glycocalyx in the penile corpus cavernosum may be a new method for treating erectile dysfunction caused by low androgen levels. Strengths and Limitations This study confirms that low androgen status promotes the breakdown of the endothelial glycocalyx. However, further research is needed to determine whether androgens are related to the synthesis of the endothelial glycocalyx. Conclusion Low androgen status may suppress the level of nitric oxide in the cavernous tissue of the penis via impairment of the endothelial glycocalyx, resulting in inhibited erection function in rats.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Urology, Hejiang County Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
5
|
Corona G, Rastrelli G, Bianchi N, Sparano C, Sforza A, Vignozzi L, Maggi M. Hyperprolactinemia and male sexual function: focus on erectile dysfunction and sexual desire. Int J Impot Res 2024; 36:324-332. [PMID: 37340146 DOI: 10.1038/s41443-023-00717-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
The present paper aims to analyze and discuss the available evidence supporting the relationship between male sexual function and elevated prolactin (PRL) levels (HPRL). Two different sources of data were analyzed. Clinical data were derived from a series of patients seeking medical care for sexual dysfunction at our Unit. Out of 418 studies, 25 papers were used with a meta-analytic approach to evaluate the overall prevalence of HPRL in patients with erectile dysfunction (ED) and to study the influence of HPRL and its treatment on male sexual function. Among 4215 patients (mean age 51.6 ± 13.1 years) consulting for sexual dysfunction at our Unit, 176 (4.2%) showed PRL levels above the normal range. Meta-analytic data showed that HPRL is a rare condition among patients with ED (2 [1;3]%). Either clinical and meta-analytic data confirm a stepwise negative influence of PRL on male sexual desire (S = 0.00004 [0.00003; 0.00006]; I = -0.58915 [-0.78438; -0.39392]; both p < 0.0001 from meta-regression analysis). Normalization of PRL levels is able to improve libido. The role of HPRL in ED remains inconclusive. Data from a meta-analytic approach showed that either HPRL or reduced T levels were independently associated with ED rates. The normalization of PRL levels only partially restored ED. HPRL did not significantly contribute to ED severity, in our clinical setting. In conclusion, treating HPRL can restore normal sexual desire, whereas its effect on erection is limited.
Collapse
Affiliation(s)
- G Corona
- Endocrinology Unit, Maggiore-Bellaria Hospital, Medical Department, Azienda-Usl Bologna, Bologna, Italy.
| | - G Rastrelli
- Andrology, Female Endocrinology and Gender Incongruence Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - N Bianchi
- Endocrinology Unit, Maggiore-Bellaria Hospital, Medical Department, Azienda-Usl Bologna, Bologna, Italy
| | - C Sparano
- Endocrinology Unit Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - A Sforza
- Endocrinology Unit, Maggiore-Bellaria Hospital, Medical Department, Azienda-Usl Bologna, Bologna, Italy
| | - L Vignozzi
- Andrology, Female Endocrinology and Gender Incongruence Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - M Maggi
- Endocrinology Unit Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Wang N, Jiang Q, Xie L, Cheng B, Liu QW, Jiang R. Methylation of eNOS in the rat penile corpus cavernosum under different pathological states and its relationship with erectile function. Andrology 2024; 12:222-230. [PMID: 37222247 DOI: 10.1111/andr.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND It has been shown that methylation in the promoter region of eNOS can downregulate eNOS expression resulting in the endothelial dysfunction. However, it is unclear whether low androgen levels and type 1 diabetes cause ED by methylating the promoter region of eNOS in the penile corpus cavernosum. OBJECTIVE To clarify the effects of type 1 diabetes and hypo-androgen status on the methylation level of the promoter region of the eNOS gene in penile cavernous tissue and their relationship with the erectile function. METHODS Fifty-eight eight-week-old male Sprague-Dawley rats were randomly divided into six groups (n = 6): sham operation group, castration group, castration+testosterone (cast+T) group, normoglycemia group, diabetic group, and diabetic+methyltransferase inhibitor (5-aza-dc, 1.5 mg/kg) group. The ICPmax/MAP, serum T, the concentration of nitric oxide (NO), the expression of DNMT1, DNMT3a, DNMT3b, and eNOS, and the methylation level of the eNOS promoter region in penile corpus cavernosum of rat were examined 4 weeks after surgery in the sham-operated group, the castration group, and the castration + testosterone replacement group. Those tests were examined after 6 weeks using of methylation inhibitors in the normoglycemic group, the diabetic group, and the diabetic + methylation inhibitor group. RESULTS ICPmax/MAP, DNMT1, DNMT3a, DNMT3b, eNOS, and NO levels were significantly lower in castrated rats than in sham and cast+T rats (P < 0.05). ICPmax/MAP, eNOS, and NO levels were lower, and DNMT1, DNMT3a, and DNMT3b expression levels were significantly increased in the diabetic group compared with the normoglycemic and diabetic+methyltransferase inhibitor groups (P < 0.05). There was no significant difference in the methylation level of the promoter region of eNOS in penile cavernous tissue of castrated rats compared with the sham group or the testosterone replacement group. The methylation level of the promoter region of eNOS in penile cavernous tissue was significantly higher in the diabetic group than in the normoglycemic group and diabetic+methyltransferase inhibitor group (P < 0.05). CONCLUSION Although low androgen status inhibited the level of methyltransferase in rat penile cavernous tissue, did not affect the level of methylation in the promoter region of eNOS. Hyperglycemia inhibits the NO level in the penile cavernous tissue and the erectile function of rats by upregulating the methyltransferase level in the penile cavernous tissue and the methylation level in the promoter region of eNOS. Methylation inhibitors can partly improve the erectile function in type 1 diabetic rats.
Collapse
Affiliation(s)
- Na Wang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qilan Jiang
- Department of Clinical Nutrition, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Libo Xie
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Cheng
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qin-Wen Liu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nephropathy Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|