1
|
Castelló-Ruiz M, Gacem S, Sánchez Del Pino MM, Hidalgo CO, Tamargo C, Álvarez-Rodríguez M, Yániz JL, Silvestre MA. Effect of Capacitation on Proteomic Profile and Mitochondrial Parameters of Spermatozoa in Bulls. J Proteome Res 2025; 24:1817-1831. [PMID: 40133237 DOI: 10.1021/acs.jproteome.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Sperm capacitation is a critical process for fertilization. This work aims to analyze the effect in vitro capacitation had on the proteome and mitochondrial parameters of bull spermatozoa. Viability, mitochondrial membrane potential (MMP), and reactive oxygen species (mROS) were assessed by flow cytometry in noncapacitated (NC) and in vitro capacitated (IVC) sperm. Proteome was evaluated using SWATH-MS. In vitro capacitation significantly induced a decrease in sperm viability, a high MMP, and an increase in mROS production. Within the group of living spermatozoa, the capacitation significantly induced a decrease in healthy mitochondrial spermatozoa, as well as an increase in mROS production, without affecting the MMP intensity. A total number of 72 differentially abundant proteins were found of which 63 were over-represented in the NC sperm group and 9 in the IVC sperm group. It was observed that many proteins associated with the sperm membrane and acrosome were lost during the capacitation process. For the IVC sperm, the functional enrichment was found in proteins related to the oxidative phosphorylation process. Our results indicate that the capacitation process induces a significant loss of seminal plasma-derived membrane proteins and a significant increase in proteins related with the oxidative phosphorylation (OXPHOS) pathway. Data are available via ProteomeXchange with identifiers PXD056424 and PXD042286.
Collapse
Affiliation(s)
- María Castelló-Ruiz
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Universitat de València, Burjassot 46100, Spain
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia 46026, Spain
| | - Sabrina Gacem
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Universitat de València, Burjassot 46100, Spain
| | - Manuel M Sánchez Del Pino
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot 46100, Spain
| | - Carlos O Hidalgo
- Animal Selection and Reproduction Area, Regional Agrifood Research and Development Service (SERIDA), Deva, Gijón 33394, Spain
| | - Carolina Tamargo
- Animal Selection and Reproduction Area, Regional Agrifood Research and Development Service (SERIDA), Deva, Gijón 33394, Spain
| | - Manuel Álvarez-Rodríguez
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid 28040, Spain
| | - Jesús L Yániz
- BIOFITER Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, Huesca 22071, Spain
| | - Miguel A Silvestre
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Universitat de València, Burjassot 46100, Spain
| |
Collapse
|
2
|
Sutovsky P, Zelenkova N, Postlerova P, Zigo M. Proteostasis as a Sentry for Sperm Quality and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:273-303. [PMID: 40301261 DOI: 10.1007/978-3-031-82990-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| | - Natalie Zelenkova
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Tomar AK, Thapliyal A, Mathur SR, Parshad R, Suhani, Yadav S. Exploring Molecular Alterations in Breast Cancer Among Indian Women Using Label-Free Quantitative Serum Proteomics. Biochem Res Int 2024; 2024:5584607. [PMID: 39990193 PMCID: PMC11847613 DOI: 10.1155/bri/5584607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/14/2024] [Indexed: 02/25/2025] Open
Abstract
The clinical data indicate that diverse parameters characterize breast cancer patients in India, including age at presentation, risk factors, outcomes, and behavior. Alarming incidence and mortality rates emphasize the crucial need for early screening measures to combat breast cancer-related deaths effectively. Quantitative proteomic approaches prove pivotal in predicting cancer prognosis, analyzing protein expression patterns tied to disease aggressiveness and metastatic potential, and facilitating conversant therapy selection. Thus, this study was envisioned with the goal of identifying protein markers associated with breast cancer in Indian women, which could potentially be developed as diagnostic tools and therapeutic targets in the future. Applying label-free proteomic quantitation method and statistical analysis, several differentially expressed proteins (DEPs) were identified in the serum of breast cancer patients compared to controls, including SBSN, ANG, PCOLCE, and WFDC3 (upregulated), and PFN1, FLNA, and DSG2 (downregulated). The expression of SBSN was also validated by western blotting. Statistical methods were employed to proteomic expression data, which highlighted the ability of DEPs to distinguish between breast cancer and control samples. Conclusively, this study recognizes prospective biomarkers for breast cancer among Indian women and highlights the requisite of in-depth functional studies to elucidate their precise roles in breast cancer development. We particularly emphasize on SBSN and PFN1, as these proteins were observed to be progressively overexpressed and under expressed, respectively, in breast cancer samples compared to control samples, ranging from early-stage to metastatic cases.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sandeep R. Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rajinder Parshad
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Suhani
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
4
|
Kumar V, Tomar AK, Thapliyal A, Yadav S. Proteomics and Bioinformatics Investigations Link Overexpression of FGF8 and Associated Hub Genes to the Progression of Ovarian Cancer and Poor Prognosis. Biochem Res Int 2024; 2024:4288753. [PMID: 39309198 PMCID: PMC11415250 DOI: 10.1155/2024/4288753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Ovarian cancer's asymptomatic nature, high recurrence rate, and resistance to platinum-based chemotherapy highlight the need to find and characterize new diagnostic and therapeutic targets. While prior studies have linked aberrant expression of fibroblast growth factor 8 (FGF8) to various cancer types, its precise role has remained elusive. Recently, we observed that FGF8 silencing reduces the cancer-promoting properties of ovarian cancer cells, and thus, this study aimed to understand how FGF8 regulates the development of ovarian cancer. LC-MS/MS-based quantitative proteomics analysis identified 418 DEPs, and most of them were downregulated in FGF8-silenced ovarian cancer cells. Many of these DEPs are associated with cancer progression and unfavorable prognosis. To decipher the biological significance of DEPs, bioinformatics analyses encompassing gene ontology, pathway analysis, protein-protein interaction networks, and expression analysis of hub genes were carried out. Hub genes identified in the FGF8 protein network were upregulated in ovarian cancer compared to controls and were linked to poor prognosis. Subsequently, the expression of hub genes was correlated with patient survival and regulation of the tumor microenvironment. Conclusively, FGF8 and associated hub genes help in the progression of ovarian cancer, and their overexpression may lead to higher immune infiltration, poor prognosis, and poor survival.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Anil Kumar Tomar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Ayushi Thapliyal
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Savita Yadav
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| |
Collapse
|
5
|
Chopra P, Tomar AK, Thapliyal A, Ranjan P, Datta SK, Yadav S. Quantitative Proteomics of COVID-19 Recovered Patients Identifies Long-Term Changes in Sperm Proteins Leading to Cellular Stress in Spermatozoa. Reprod Sci 2024; 31:2409-2424. [PMID: 38658489 DOI: 10.1007/s43032-024-01560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Following an initial recovery, COVID-19 survivors struggle with a spectrum of persistent medical complications, including fatigue, breathlessness, weight loss, hair loss, and attention deficits. Additionally, there is growing evidence of adverse effects of COVID-19 on the male reproductive system. This investigation seeks to understand the long-term ramifications on male fertility by examining hormonal profiles, semen parameters, and sperm proteome of recovered COVID-19 patients compared to controls. The serum hormone profiles between the two groups showed minimal variations except for prolactin, cortisol, and testosterone levels. Testosterone levels were slightly lower, while prolactin and cortisol were elevated in COVID-19 cases compared to controls. Though semen parameters exhibited no significant disparities between the COVID-19 and control groups, quantitative proteomics analysis revealed changes in sperm proteins. It identified 190 differentially expressed proteins, of which 161 were upregulated and 29 downregulated in COVID-19 cases. Western blotting analysis validated the differential expression of serpin B4 and calpain 2. Bioinformatics analysis signifies cellular stress in the spermatozoa of COVID-19 recovered patients and thus, SOD and MDA levels in semen were measured. MDA levels were found to be significantly elevated, indicating lipid peroxidation in COVID-19 samples. While the effects of COVID-19 on semen parameters may exhibit a potential for reversal within a short duration, the alterations it inflicts on sperm proteome are persisting consequences on male fertility. This study paves the path for further research and emphasizes the significance of comprehending the complex molecular processes underlying the long-term consequences of COVID-19 on male reproductive health.
Collapse
Affiliation(s)
- Parul Chopra
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Piyush Ranjan
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
6
|
Thapliyal A, Tomar AK, Naglot S, Dhiman S, Datta SK, Sharma JB, Singh N, Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA 2024; 10:41. [PMID: 39051375 PMCID: PMC11270218 DOI: 10.3390/ncrna10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The high incidence of idiopathic recurrent pregnancy loss (iRPL) may stem from the limited research on male contributory factors. Many studies suggest that sperm DNA fragmentation and oxidative stress contribute to iRPL, but their roles are still debated. MicroRNAs (miRNAs) are short non-coding RNAs that regulate various biological processes by modulating gene expression. While differential expression of specific miRNAs has been observed in women suffering from recurrent miscarriages, paternal miRNAs remain unexplored. We hypothesize that analyzing sperm miRNAs can provide crucial insights into the pathophysiology of iRPL. Therefore, this study aims to identify dysregulated miRNAs in the spermatozoa of male partners of iRPL patients. Total mRNA was extracted from sperm samples of iRPL and control groups, followed by miRNA library preparation and high-output miRNA sequencing. Subsequently, raw sequence reads were processed for differential expression analysis, target prediction, and bioinformatics analysis. Twelve differentially expressed miRNAs were identified in the iRPL group, with eight miRNAs upregulated (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p) and four downregulated (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and hsa-miR-520b-5p). Functional enrichment analysis revealed that gene targets of the upregulated miRNAs are involved in various biological processes closely associated with sperm quality and embryonic development.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarla Naglot
- Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
7
|
Netherton JK, Ogle RA, Robinson BR, Molloy M, Krisp C, Velkov T, Casagranda F, Dominado N, Silva Balbin Villaverde AI, Zhang XD, Hime GR, Baker MA. The role of HnrnpF/H as a driver of oligoteratozoospermia. iScience 2024; 27:110198. [PMID: 39092172 PMCID: PMC11292545 DOI: 10.1016/j.isci.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
Collapse
Affiliation(s)
- Jacob K. Netherton
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rachel A. Ogle
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benjamin R. Robinson
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A. Baker
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
Cui X, Cai X, Zhang F, Zhang W, Liu H, Mu S, Guo S, Wan H, Zhang H, Zhang Z, Kang X. Comparative Proteomics Elucidates the Potential Mechanism of Sperm Capacitation of Chinese Mitten Crabs ( Eriocheir sinensis). J Proteome Res 2024; 23:1603-1614. [PMID: 38557073 DOI: 10.1021/acs.jproteome.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Collapse
Affiliation(s)
- Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Xueqian Cai
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Fenghao Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huan Liu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding First Central Hospital, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
9
|
Corda PO, Moreira J, Howl J, Oliveira PF, Fardilha M, Silva JV. Differential Proteomic Analysis of Human Sperm: A Systematic Review to Identify Candidate Targets to Monitor Sperm Quality. World J Mens Health 2024; 42:71-91. [PMID: 37118964 PMCID: PMC10782124 DOI: 10.5534/wjmh.220262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE The advent of proteomics provides new opportunities to investigate the molecular mechanisms underlying male infertility. The selection of relevant targets based on a single analysis is not always feasible, due to the growing number of proteomic studies with conflicting results. Thus, this study aimed to systematically review investigations comparing the sperm proteome of normozoospermic and infertile men to define a panel of proteins with the potential to be used to evaluate sperm quality. MATERIALS AND METHODS A literature search was conducted on PubMed, Web of Science, and Scopus databases following the PRISMA guidelines. To identify proteins systematically reported, first the studies were divided by condition into four groups (asthenozoospermia, low motility, unexplained infertility, and infertility related to risk factors) and then, all studies were analysed simultaneously (poor sperm quality). To gain molecular insights regarding identified proteins, additional searches were performed within the Human Protein Atlas, Mouse Genome Informatics, UniProt, and PubMed databases. RESULTS Thirty-two studies were included and divided into 4 sub-analysis groups. A total of 2752 proteins were collected, of which 38, 1, 3 and 2 were indicated as potential markers for asthenozoospermia, low motility, unexplained infertility and infertility related to risk factors, respectively, and 58 for poor sperm quality. Among the identified proteins, ACR, ACRBP, ACRV1, ACTL9, AKAP4, ATG3, CCT2, CFAP276, CFAP52, FAM209A, GGH, HPRT1, LYZL4, PRDX6, PRSS37, REEP6, ROPN1B, SPACA3, SOD1, SPEM1, SPESP1, SPINK2, TEKT5, and ZPBP were highlighted due to their roles in male reproductive tissues, association with infertility phenotypes or participation in specific biological functions in spermatozoa. CONCLUSIONS Sperm proteomics allows the identification of protein markers with the potential to overcome limitations in male infertility diagnosis and to understand changes in sperm function at the molecular level. This study provides a reliable list of systematically reported proteins that could be potential targets for further basic and clinical studies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jéssica Moreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Pedro F Oliveira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Joana Vieira Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Castillo J, de la Iglesia A, Leiva M, Jodar M, Oliva R. Proteomics of human spermatozoa. Hum Reprod 2023; 38:2312-2320. [PMID: 37632247 DOI: 10.1093/humrep/dead170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomic methodologies offer a robust approach to identify and quantify thousands of proteins from semen components in both fertile donors and infertile patients. These strategies provide an unprecedented discovery potential, which many research teams are currently exploiting. However, it is essential to follow a suitable experimental design to generate robust data, including proper purification of samples, appropriate technical procedures to increase identification throughput, and data analysis following quality criteria. More than 6000 proteins have been described so far through proteomic analyses in the mature sperm cell, increasing our knowledge on processes involved in sperm function, intercommunication between spermatozoa and seminal fluid, and the transcriptional origin of the proteins. These data have been complemented with comparative studies to ascertain the potential role of the identified proteins on sperm maturation and functionality, and its impact on infertility. By comparing sperm protein profiles, many proteins involved in the acquisition of fertilizing ability have been identified. Furthermore, altered abundance of specific protein groups has been observed in a wide range of infertile phenotypes, including asthenozoospermia, oligozoospermia, and normozoospermia with unsuccessful assisted reproductive techniques outcomes, leading to the identification of potential clinically useful protein biomarkers. Finally, proteomics has been used to evaluate alterations derived from semen sample processing, which might have an impact on fertility treatments. However, the intrinsic heterogeneity and inter-individual variability of the semen samples have resulted in a relatively low overlap among proteomic reports, highlighting the relevance of combining strategies for data validation and applying strict criteria for proteomic data analysis to obtain reliable results. This mini-review provides an overview of the most critical steps to conduct robust sperm proteomic studies, the most relevant results obtained so far, and potential next steps to increase the impact of sperm proteomic data.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina Leiva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Thapliyal A, Tomar AK, Chandra KB, Naglot S, Dhiman S, Singh N, Sharma JB, Yadav S. Differential Sperm Proteomics Reveals the Significance of Fatty Acid Synthase and Clusterin in Idiopathic Recurrent Pregnancy Loss. Reprod Sci 2023; 30:3456-3468. [PMID: 37378824 DOI: 10.1007/s43032-023-01288-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Recurrent pregnancy loss (RPL) is a pervasive health issue affecting a large number of couples globally, which leads to increased emotional and financial strain on the affected families. While female factors have been extensively studied and are well known, the contribution of male factors to RPL remains largely unknown. As high as 40% of RPL cases are unexplained, which are termed as idiopathic RPL (iRPL), necessitating the investigation of male factors. The role of spermatozoa in early embryonic development is now well established, and recent research studies have shown that oxidative stress and DNA fragmentation in sperm cells are linked to RPL. The aim of this study was to identify proteomic markers of iRPL in human spermatozoa using tandem mass spectrometry. A label-free method quantified a total of 1820 proteins, and statistical analysis identified 359 differentially expressed proteins, the majority of which were downregulated in iRPL samples (344). Bioinformatics analysis revealed that proteomic alterations were mainly associated with biological processes such as response to stress, protein folding, chromatin organization, DNA conformation change, oxidative phosphorylation, and electron transport chain. In coherence with past studies, we determined fatty acid synthase (FASN) and clusterin (CLU) to be the most potential sperm markers for iRPL and confirmed their expression changes in iRPL by western blotting. Conclusively, we believe that FASN and CLU might serve as potential markers of iRPL and suggest exploratory functional studies to identify their specific role in pregnancy loss.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kumari Binita Chandra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sarla Naglot
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Medical Device and Diagnostics Mission Secretariat (MDMS), ICMR, New Delhi, 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Gacem S, Castello-Ruiz M, Hidalgo CO, Tamargo C, Santolaria P, Soler C, Yániz JL, Silvestre MA. Bull Sperm SWATH-MS-Based Proteomics Reveals Link between High Fertility and Energy Production, Motility Structures, and Sperm-Oocyte Interaction. J Proteome Res 2023; 22:3607-3624. [PMID: 37782577 PMCID: PMC10629479 DOI: 10.1021/acs.jproteome.3c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/04/2023]
Abstract
The prediction of male or semen fertility potential remains a persistent challenge that has yet to be fully resolved. This work analyzed several in vitro parameters and proteome of spermatozoa in bulls cataloged as high- (HF; n = 5) and low-field (LF; n = 5) fertility after more than a thousand artificial inseminations. Sperm motility was evaluated by computer-assisted sperm analysis. Sperm viability, mitochondrial membrane potential (MMP) and reactive oxygen species (mROS) of spermatozoa were assessed by flow cytometry. Proteome was evaluated by the SWATH-MS procedure. Spermatozoa of HF bulls showed significantly higher total motility than the LF group (41.4% vs 29.7%). Rates of healthy sperm (live, high MMP, and low mROS) for HF and LF bull groups were 49% and 43%, respectively (p > 0.05). Spermatozoa of HF bulls showed a higher presence of differentially abundant proteins (DAPs) related to both energy production (COX7C), mainly the OXPHOS pathway, and the development of structures linked with the motility process (TPPP2, SSMEM1, and SPAG16). Furthermore, we observed that equatorin (EQTN), together with other DAPs related to the interaction with the oocyte, was overrepresented in HF bull spermatozoa. The biological processes related to protein processing, catabolism, and protein folding were found to be overrepresented in LF bull sperm in which the HSP90AA1 chaperone was identified as the most DAP. Data are available via ProteomeXchange with identifier PXD042286.
Collapse
Affiliation(s)
- Sabrina Gacem
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Departamento
de Medicina y Cirugía Animal, Universitat
Autònoma de Barcelona, 08193 Barcelona, Spain
| | - María Castello-Ruiz
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Unidad
Mixta de Investigación Cerebrovascular, Instituto de Investigación
Sanitaria La Fe, Hospital Universitario
y Politécnico La Fe, 46026 Valencia, Spain
| | - Carlos O. Hidalgo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Carolina Tamargo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Pilar Santolaria
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Carles Soler
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| | - Jesús L. Yániz
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Miguel A. Silvestre
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| |
Collapse
|