1
|
Wu B, Wang T, Zhang Y, Li Y, Chen X, Xie Z, Kong C, Lan Y, Ye H, Song X, Zhao Z, Che Y. Association between ambient temperature and couple fecundity: Insights from a large-scale cohort study in Yunnan, China. Int J Hyg Environ Health 2025; 264:114525. [PMID: 39874638 DOI: 10.1016/j.ijheh.2025.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Direct evidence linking ambient temperature to human fecundity is sparse. We aimed to evaluate the potential impact of ambient temperature on time to pregnancy (TTP) and identify the optimal temperature range for initiating conception attempts. METHODS Our analysis included 576 927 couples from the Chinese National Free Preconception Health Examination Project (NFPHEP) in Yunnan Province, with a one-year follow-up post-enrollment. Each female partner's cycle-specific average temperatures (Tmean) at the couple residences were aggregated and summarized by daily concentrations with a resolution of 0.1° × 0.1°. We used discrete-time Cox regression nested with distributed lag non-linear models to estimate the fecundity odds ratio (FOR) for Tmean concerning one-, two-, or three-cycle preceding pregnancy attempts. RESULTS Among the 576 927 couples (mean [SD] age: female partner, 27.6 [5.5] years; male partner, 30.1 [5.8] years), 193 710 couples conceived within 12 cycles, among which 52.1% were pregnant within 3 TTPs and 78.9% were pregnant within 6 TTPs. The cumulative pregnancy rate in 12 menstrual cycles was 38.87%. An inverted U-shaped exposure-response relationship between TTP and Tmean was identified for the cycles preceding the pregnancy attempt. The optimal temperature interval (TI) for conception attempts was determined to be 7.9 °C to 14.5 °C, correlating with a 0.3% (FOR: 1.003, 95%CI: 0.987-1.020) to 3.8% (FOR:1.038, 95%CI: 1.031-1.047) increase in fecundity, compared to the median Tmean of 15.9 °C. Temperatures below or above this interval were linked to a significant reduction in fecundity, ranging from 1.2% (FOR: 0.988, 95%CI: 0.977-1.000) to 6.8% (FOR: 0.932, 95%CI: 0.910-0.953) for the lower TI (<7.9 °C), 2.3% (FOR: 0.977, 95%CI: 0.970-0.984) to 6.6% (FOR: 0.934, 95%CI: 0.921-0.948) for the higher TI (14.5 °C-24.6 °C), respectively, compared to the optimal TI. These findings were robust after stratifying by age and BMI of female or male partners. CONCLUSION Exposure to temperatures within the 7.9 °C to 14.5 °C, one to three menstrual cycles preceding pregnancy attempts, was associated with enhanced fecundity and a reduced TTP, suggesting that the optimal ambient temperature could be pivotal for conception success.
Collapse
Affiliation(s)
- Bingxue Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Tao Wang
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yan Zhang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Yuyan Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Xing Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Zhengyuan Xie
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Cai Kong
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yuzhi Lan
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Hanfeng Ye
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Xiangjing Song
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Zigao Zhao
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China.
| | - Yan Che
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
2
|
Dai X, Chen W, Liu G, Li F, Sun S, Chen Q, Chen G, Zhang M, Wang Z, Li W, Huang H, Li J. Association between residential greenness exposure and semen quality: A retrospective study in China. ENVIRONMENT INTERNATIONAL 2024; 193:109132. [PMID: 39536663 DOI: 10.1016/j.envint.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The association between greenness exposure and semen quality and the underlying mechanism are unclear. OBJECTIVES To assess the association between greenness exposure and semen quality and whether the association is mediated by air pollutant exposure. METHODS We collected data from 10,273 men in Zhejiang, China, whose wives received assisted reproductive technology from 2015 to 2021. The mean exposure concentrations of air pollutants and greenness indices (normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI)) in the 300 m, 400 m, 800 m, and 1000 m buffer zones were assessed from 0-90 days prior to semen testing on the basis of the patient's residential address. A multivariate linear mixed-effects model was used to evaluate the associations, and mediation analysis was used to investigate the influences of air pollutant exposure and body mass index (BMI) on the associations. RESULTS The average (standard deviation) age of the participants was 33.1 (5.2) years. After adjusting for confounders, progressive motility was positively associated with the NDVI400m (β (95 % CI): 1.744 (0.834, 2.655)) and SAVI400m (β (95 % CI): 1.484 (0.591, 2.377)). Furthermore, we found that NO2 and CO exposure significantly mediated part of the association between greenness exposure and progressive motility. Similar results are observed in the sensitivity analysis. CONCLUSIONS Our results suggest that greater greenness exposure is associated with higher semen quality and can be partially mediated by lower NO2 and CO exposure levels.
Collapse
Affiliation(s)
- Xuchao Dai
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Weikang Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Guangyuan Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Feidi Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuren Sun
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Gang Chen
- Hospital Infection Control Management Department, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mengqi Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenfeng Wang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenyuan Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Hong Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jingping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
3
|
Cai K, Wang L, Tong Y, Pu X, Guo T, Xu H, Xie J, Wang L, Bai T. Negative association of atmospheric pollutants with semen quality: A cross-sectional study in Taiyuan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116941. [PMID: 39208577 DOI: 10.1016/j.ecoenv.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In recent decades, the quality of male semen has decreased worldwide. Air pollution has been linked to lower semen quality in several studies. However, the effects of atmospheric pollutants on different semen characteristics have not always been consistent. The aim of this study was to investigate the association between the Air Quality Index (AQI) and six atmospheric pollutants (PM2.5, PM10, SO2, NO2, CO, and O3), semen quality, and their key exposure window periods. METHODS This study included 1711 semen samples collected at the reproductive clinics of the First Affiliated Hospital of Shanxi Medical University in Taiyuan, Shanxi, China, from October 10, 2021, to September 30, 2022. We evaluated the association of AQI and six atmospheric pollutants with semen quality parameters throughout sperm development and three key exposure windows in men using single-pollutant models, double-pollutant models, and subgroup analyses of semen quality-eligible groups. RESULTS Both the single-pollutant model and subgroup analyses showed that PM, CO, and O3 levels were negatively correlated with total and progressive motility. At 70-90 d before semen collection, CO exposure and semen volume (β =-1.341, 95 % CI: -1.805, -0.877, P <0.001), total motility (β =-2.593, 95 % CI: -3.425, -1.761, P <0.001), and progressive motility (β =-4.658, 95 % CI: -5.556, -3.760, P <0.001) were negatively correlated. At 0-9 days before semen collection, CO was negatively correlated with normal morphology (β =-3.403, 95 % CI: -5.099, -1.708, P <0.001). Additionally, the AQI was adversely associated with total and progressive motility in subgroup analyses of the semen quality-eligible groups. CONCLUSIONS During the entire sperm development process, multiple air pollutants were determined to have an adverse correlation with semen quality parameters. AQI was significant marker for the combined effects of various atmospheric pollutants on male reproductive health.
Collapse
Affiliation(s)
- Ke Cai
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Li Wang
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Center for Early Childhood Development, Shanxi Medical University, Taiyuan 030001, China
| | - Yujun Tong
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Pu
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Tingyu Guo
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Hexiang Xu
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Jialin Xie
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Liyan Wang
- Fenyang Medical College, Shanxi Medical University, Luliang 032200, China
| | - Tao Bai
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
4
|
Dai X, Liu G, Pan C, Li F, Liu Y, Liu J, Chen G, Zhang M, Fei Q, Zheng J, Huang H, Wu Z. Individual and joint associations of air pollutants exposure with semen quality: A retrospective longitudinal study in Wenzhou, China. Int Arch Occup Environ Health 2024; 97:901-913. [PMID: 39060503 DOI: 10.1007/s00420-024-02095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The impact of air pollution on semen quality has been confirmed, yet the joint effect remains unclear. We evaluate the individual and joint associations of particulate (PM2.5 and PM10) and gaseous pollutants (NO2, SO2, O3 and CO) with semen quality. METHODS We included 5,114 men in this study from 2014 to 2022. The individual and joint associations were measured by multiple linear regression models. RESULTS Sperm motility and semen volume were inversely associated with pollutant concentrations during every stage of sperm development, especially at lag days 0-9 and 10-14 (all P < 0.05). Stratified analyses showed that the study pollutants (except CO) had a positive effect on semen concentration during the stage of sperm development, especially in spring and autumn, while a decreased total sperm number was associated with CO (all P < 0.05). However, joint associations of particulate and gaseous pollutants with semen quality parameters were not statistically significant (all P > 0.05). CONCLUSIONS During all stages of sperm development, particulate and gaseous pollutants had individual negative impacts on sperm motility and semen volume, and these impacts were less pronounced in spring and autumn. Our findings highlight the importance and necessity of reducing the exposure to pollutants especially in the critical stage of sperm development to improve semen quality.
Collapse
Affiliation(s)
- Xuchao Dai
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guangyuan Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Chengshuang Pan
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feidi Li
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yawen Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiaxin Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Gang Chen
- Hospital Infection Control Management Department, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengqi Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianjin Fei
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiujia Zheng
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong Huang
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou, 325035, China.
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
5
|
Shi Y, Zhang Y, Yuan K, Han Z, Zhao S, Zhang Z, Cao W, Li Y, Zeng Q, Sun S. Exposure to ambient ozone and sperm quality among adult men in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116753. [PMID: 39083872 DOI: 10.1016/j.ecoenv.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Limited evidence exists regarding the association between ozone exposure and adverse sperm quality. We aimed to assess the association between ozone exposure and sperm quality, and identify susceptible exposure windows. METHODS We recruited 32,541 men aged between 22 and 65 years old attending an infertility clinic in Wuhan, Hubei Province, China from 2014 to 2020. Ozone data were obtained from a satellite-based spatiotemporal model. Generalized linear models were used to estimate the association between ozone exposure and sperm quality parameters, including sperm concentration, sperm count, sperm total motility, and sperm progressive motility during the entire stage of sperm development (0-90 days before ejaculation) and three crucial stages (0-9 days, 10-14 days and 70-90 days before ejaculation). Stratified analyses were performed to evaluate whether associations varied by age, body mass index, and education levels. RESULTS The final analysis included 27,854 adult men. A 10 μg/m3 increase in ozone concentrations during the entire stage of sperm development was associated with a -4.17 % (95 % CI: -4.78 %, -3.57 %) decrease in sperm concentration, -6.54 % (95 % CI: -8.03 %, -5.60 %) decrease in sperm count, -0.50 % (95 % CI: -0.66 %, -0.34 %) decrease in sperm total motility, and -0.07 % (95 % CI: -0.22 %, 0.09 %) decrease in sperm progressive motility. The associations were stronger during 70-90 days before ejaculation and among men with middle school and lower education for sperm concentration. CONCLUSIONS Ozone exposure was associated with decreased sperm quality among Chinese adult men attending an infertility clinic. These results suggest that ozone may be a risk factor contributing to decreased sperm quality in Chinese men.
Collapse
Affiliation(s)
- Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, Hubei 1095, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Zhang Y, Wei J, Zhao S, Zeng Q, Sun S, Cao W. Ambient fine particulate matter constituents and semen quality among adult men in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133313. [PMID: 38147745 DOI: 10.1016/j.jhazmat.2023.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) was associated with decreased semen quality, but the relationship between PM2.5 constituents and semen quality was unclear. We recruited 27,824 adult men attending an infertility clinic in Wuhan, China, between 2014 and 2020. We used a four-dimensional spatiotemporal deep forest model to estimate concentrations of PM2.5 mass and its chemical constituents, including organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-). We employed linear regression models to estimate the association between PM2.5 mass and its constituents with various sperm parameters. Exposure to PM2.5 was associated with a reduction in sperm quality, with a percent change of - 5.69% (95% confidence interval [CI]: -8.53%, -2.85%) for sperm density, - 15.09% (95% CI: -22.24%, -7.94%) for sperm total count, - 1.63% (95% CI: -2.36%, -0.91%) for sperm progressive motility, and - 2.30% (95% CI: -3.04%, -1.55%) for sperm total motility. Among specific constituents, exposure to OM, BC, Cl-, or NO3- was associated with a reduction in these four semen quality parameters. The association was more pronounced among older men or individuals with lower levels of education. Our findings suggest that PM2.5 mass and each constituent were associated with decreased semen quality in adult men.
Collapse
Affiliation(s)
- Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Shi Zhao
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, 999077, the Hong Kong Special Administrative Region of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Zhang Y, Shi W, Zhang M, Xu L, Wu L, Li C, Zhang Z, Cao W, Zhang J, Zeng Q, Sun S. Exposure to PM 2.5, seminal plasma metabolome, and semen quality among Chinese adult men: Association and potential mediation analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132602. [PMID: 37748305 DOI: 10.1016/j.jhazmat.2023.132602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been linked to a decline in semen quality, but the underlying mechanisms for this association remain unclear. We aimed to examine whether specific metabolites act as mediators in the association between PM2.5 exposure and changes in semen quality. We conducted untargeted metabolomics analysis using LC-MS/MS platforms to identified seminal plasma metabolites associated with various semen quality parameters among 200 Chinese adult men. Additionally, we performed mediation analyses to examine the effects of the seminal plasma metabolites on the association between PM2.5 exposure and semen quality. We identified 140 differential metabolites between the normal and abnormal semen groups, involving two metabolic pathways: Alanine, aspartate and glutamate metabolism, and Aminoacyl-tRNA biosynthesis. We additionally identified 7 specific seminal plasma metabolites that were associated with discrepant metabolic networks related to semen quality. The mediation analysis revealed that D-Aspartate might play a mediating role in the adverse effects of ambient PM2.5 exposure on both total and progressive motility during spermatogenesis period (70-90 days before ejaculation), with a proportion of mediation up to 16% and 17%, respectively. Exposure to PM2.5 was associated with alterations in D-Aspartate levels, which might partially mediate the association between PM2.5 and reduced sperm motility.
Collapse
Affiliation(s)
- Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wanying Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lufei Xu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Human Resources, Peking University Cancer Hospital & Institute, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road Binjiang District, Hangzhou 310051, China
| | - Chunrong Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
8
|
Wang L, Xu T, Wang Q, Ni H, Yu X, Song C, Li Y, Li F, Meng T, Sheng H, Cai X, Dai T, Xiao L, Zeng Q, Guo P, Wei J, Zhang X. Exposure to Fine Particulate Matter Constituents and Human Semen Quality Decline: A Multicenter Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13025-13035. [PMID: 37608438 PMCID: PMC10483896 DOI: 10.1021/acs.est.3c03928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Exposure to fine particulate matter (PM < 2.5 μm in diameter [PM2.5]) may accelerate human sperm quality decline, although research on this association is limited. Our objective was to investigate the relationship between exposure to the chemical constituents of PM2.5 air pollution and decreased sperm quality and to further explore the exposure-response relationship. We conducted a multicenter population-based cohort study including 78,952 semen samples from 33,234 donors at 6 provincial human sperm banks (covering central, northern, southern, eastern, and southwestern parts of China) between 2014 and 2020. Daily exposure to PM2.5 chemical composition was estimated using a deep learning model integrating a density ground-based measure network at a 1 km resolution. Linear mixed models with subject- and center-specific intercepts were used to quantify the harmful impacts of PM2.5 constituents on semen quality and explore their exposure-response relationships. Per interquartile range (IQR) increase in PM2.5 exposure levels during spermatogenesis was significantly associated with decreased sperm concentration, progressive motility, and total motility. For PM2.5 constituents, per IQR increment in Cl- (β: -0.02, 95% CI: [-0.03, -0.00]) and NO3- (β: -0.05, 95% CI: [-0.08, -0.02]) exposure was negatively associated with sperm count, while NH4+ (β: -0.03, 95% CI: [-0.06, -0.00]) was significantly linked to decreased progressive motility. These results suggest that exposure to PM2.5 chemical constituents may adversely affect human sperm quality, highlighting the urgent need to reduce PM2.5 exposure.
Collapse
Affiliation(s)
- Lingxi Wang
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Ting Xu
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Qiling Wang
- National
Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, China
- Department
of Andrology, Guangdong Provincial Reproductive
Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China
| | - Haobo Ni
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Xiaolin Yu
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Chunying Song
- Human
Sperm Bank, The Shanxi Bethune Hospital,
Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Yushan Li
- Human
Sperm Bank, The Third Affiliated Hospital
of Zhengzhou University, Zhengzhou 450052, China
| | - Fuping Li
- Human
Sperm
Bank, the Key Laboratory of Birth Defects and Related Diseases of
Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Tianqing Meng
- Reproductive
Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Human
Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiqiang Sheng
- Human
Sperm Bank, The Zhejiang Provincial Maternal
and Child and Reproductive Health Care Center, Hangzhou 310008, China
| | - Xiaoyan Cai
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Tingting Dai
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Lina Xiao
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Qinghui Zeng
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Pi Guo
- Department
of Preventive Medicine, Shantou University
Medical College, Shantou 515041, China
| | - Jing Wei
- Department
of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary
Center, University of Maryland, College Park, Maryland 20740, United States
| | - Xinzong Zhang
- National
Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, China
- Department
of Andrology, Guangdong Provincial Reproductive
Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China
| |
Collapse
|
9
|
Liu J, Dai Y, Li R, Yuan J, Wang Q, Wang L. Does air pollution exposure affect semen quality? Evidence from a systematic review and meta-analysis of 93,996 Chinese men. Front Public Health 2023; 11:1219340. [PMID: 37601219 PMCID: PMC10435904 DOI: 10.3389/fpubh.2023.1219340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Air pollution may impair male fertility, but it remains controversial whether air pollution affects semen quality until now. Objectives We undertake a meta-analysis to explore potential impacts of six pollutants exposure during the entire window (0-90 days prior to ejaculation) and critical windows (0-9, 10-14, and 70-90 days prior to ejaculation) on semen quality. Methods Seven databases were retrieved for original studies on the effects of six pollutants exposure for 90 days prior to ejaculation on semen quality. The search process does not limit the language and search date. We only included original studies that reported regression coefficients (β) with 95% confidence intervals (CIs). The β and 95% CIs were pooled using the DerSimonian-Laird random effect models. Results PM2.5 exposure was related with decreased total sperm number (10-14 lag days) and total motility (10-14, 70-90, and 0-90 lag days). PM10 exposure was related with reduced total sperm number (70-90 and 0-90 lag days) and total motility (0-90 lag days). NO2 exposure was related with reduced total sperm number (70-90 and 0-90 lag days). SO2 exposure was related with declined total motility (0-9, 10-14, 0-90 lag days) and total sperm number (0-90 lag days). Conclusion Air pollution affects semen quality making it necessary to limit exposure to air pollution for Chinese men. When implementing protective measures, it is necessary to consider the key period of sperm development.
Collapse
Affiliation(s)
- Junjie Liu
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Dai
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Li
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiayi Yuan
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanxian Wang
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linkai Wang
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Zhang Y, Wei J, Liu C, Cao W, Zhang Z, Li Y, Zeng Q, Sun S. Association between ambient PM 1 and semen quality: A cross-sectional study of 27,854 men in China. ENVIRONMENT INTERNATIONAL 2023; 175:107919. [PMID: 37104984 DOI: 10.1016/j.envint.2023.107919] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to ambient fine and respirable particulate matter is associated with poor sperm quality, but evidence for particulate matter with an aerodynamic diameter ≤ 1 μm (PM1) is scarce. We aimed to estimate the association between PM1 exposure and sperm concentration, sperm count, sperm total motility, and sperm progressive motility in Chinese men. METHODS We conducted a cross-sectional study of 33,221 men attending an infertility clinic in Hubei, China, between 2014 and 2020. Daily concentrations of PM1 data were estimated from a validated spatiotemporal artificial intelligence model. We used multivariate linear regression to estimate the association between PM1 exposure and sperm parameters during the spermatogenesis period after adjusting for age, body mass index (BMI), education, ever having fathered a child, and season of semen collection. In addition, we performed stratified analysis to assess whether the association was varied by age, BMI, and educational attainment. RESULTS A total of 27,854 participants were included in the final analysis. An interquartile range (17.2 μg/m3) increase in PM1 during the entire period of semen development was associated with declined semen concentration [-4.39% (95% CI: -7.67%, -1.12%)] and sperm count [-23.56% (95% CI: -28.95%, -18.18%)], reduced total motility [-0.86% (95% CI: -1.66%, -0.06%)] and progressive motility [-2.22% (95% CI: -3.00%, -1.43%)]. The associations were homogeneous across subgroups defined by age and education, but were more pronounced among men with underweight for sperm concentration and sperm count. We identified a critical exposure window of 0-9 lag days, 10-14 lag days, and 70-90 lag days before semen collection for sperm count and progressive motility. CONCLUSIONS Among men attending an infertility clinic in China, exposure to PM1 was associated with poor semen quality, especially during the 70-90 days before ejaculation. These results suggest that exposure to PM1 might be a novel risk factor for impaired semen quality.
Collapse
Affiliation(s)
- Yangchang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|