1
|
Agostini S, Mancuso R, Citterio LA, Caputo D, Oreni L, Nuzzi R, Pasanisi MB, Rovaris M, Clerici M. Serum miR-34a-5p, miR-103a-3p, and miR-376a-3p as possible biomarkers of conversion from relapsing-remitting to secondary progressive multiple sclerosis. Neurobiol Dis 2024; 200:106648. [PMID: 39181188 DOI: 10.1016/j.nbd.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Relapsing-remitting (RR) Multiple Sclerosis (MS) is the most common form of the disease; RRMS patients can maintain their clinical phenotype throughout life or can develop a secondary progressive (SP) course over time. We investigated whether circulating miRNAs can predict RR-to-SPMS conversion. A serum miRNAs profile was initially analyzed in a cross-sectional study by qPCR in 16 patients (8 RRMS and 8 SPMS) (Discovery cohort). Three miRNAs, i.e. miR-34a-5p, miR-103a-3p and miR-376a-3p, were significantly up-regulated in SPMS compared to RRMS patients (p < 0.0 5). Serum concentration of the same miRNAs was subsequently analyzed in a retrospective study by ddPCR at baseline in 69 RRMS patients who did (N = 36 cSPMS) or did not (N = 33) convert into SPMS over a 10-year observation period (Study cohort). The results showed that these miRNAs were significantly increased at baseline only in those RRMS patients who converted to SPMS over time. miR-34a-5p and miR-376a-3p alone were significantly increased in cSPMS sera at the end of the 10-years period too. Serum concentration of miR-34a-5p, miR-103a-3p and miR-376a-3p is increased in RRMS patients several years before their conversion to SPMS. These miRNAs might be useful biomarkers to predict the conversion from RRMS to SPMS.
Collapse
Affiliation(s)
| | | | | | | | - Letizia Oreni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Mrabet S, Sghaier I, Souissi A, Gharbi A, Abida Y, Kacem I, Gargouri-Berrechid A, Gouider R. Neurofilaments light chains as a diagnostic and predictive biomarker for Tunisian Multiple Sclerosis patients. Mult Scler Relat Disord 2024; 91:105901. [PMID: 39341199 DOI: 10.1016/j.msard.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) course was shown to be more severe among North Africans compared to Caucasians. Validation of prognostic biomarkers of disease activity and severity is a priority in our practice. OBJECTIVE We aimed to investigate the association between baseline cerebrospinal fluid (CSF) and serum NfL (sNFL) levels and disease activity and disability accrual in a cohort of Tunisian patients with MS. METHODS A cross-sectional study was conducted, in the department of Neurology of Razi Hospital, including patients diagnosed with MS. Patient's data were retrieved from our local MS database. Blood and CSF sampling were performed at the first visit. sNFL levels were measured using the Enzyme-Linked Immuno-Sorbent Assay (ELISA) sandwich technique. RESULTS Three hundred MS patients were enrolled (sex-ratio= 3.05; mean age at MS onset=28.83 years+9.55, mean MS course = 10.21 years+8.96). MS phenotype was predominately relapsing (73%). CSF NfL levels were significantly correlated to the serum ones. NfL concentrations were significantly associated with MS activity (p = 0.012), disease progression (p = 0.001), and higher Multiple Sclerosis Severity Scores (MSSS) (p = 0.0017, r = 0.28). CONCLUSIONS These results support the value of NfL as a sensitive and clinically meaningful CSF and blood biomarker to evaluate MS activity and outcomes among Tunisian MS patients.
Collapse
Affiliation(s)
- Saloua Mrabet
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Ikram Sghaier
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Amira Souissi
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Alya Gharbi
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Youssef Abida
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Imen Kacem
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Amina Gargouri-Berrechid
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Riadh Gouider
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia.
| |
Collapse
|
3
|
Queissner R, Buchmann A, Demjaha R, Tafrali C, Benkert P, Kuhle J, Jerkovic A, Dalkner N, Fellendorf F, Birner A, Platzer M, Tmava-Berisha A, Maget A, Stross T, Lenger M, Häussl A, Khalil M, Reininghaus E. Serum neurofilament light as a potential marker of illness duration in bipolar disorder. J Affect Disord 2024; 350:366-371. [PMID: 38215991 DOI: 10.1016/j.jad.2024.01.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
INTRODUCTION Investigation on specific biomarkers for diagnostic or prognostic usage in mental diseases and especially bipolar disorder BD seems to be one outstanding field in current research. Serum neurofilament light (sNfL), a marker for neuro-axonal injury, is increased in various acute and chronic neurological disorders, but also neuro-psychiatric conditions, including affective disorders. The aim of our study was to determine a potential relation between a neuron-specific marker like sNfL and different clinical states of BD. METHODS In the current investigation, 51 patients with BD and 35 HC were included. Mood ratings with the Hamilton depression scale (HAMD) and the Young mania rating scale (YMRS) have been included. Illness duration was defined as the period from the time of diagnosis out of self-report and medical records. sNFL was quantified by a commercial ultrasensitive single molecule array (Simoa). RESULTS There was a significant positive correlation between the number of manic episodes in the past and sNfL, controlled for age and duration of illness. (R = 0.49, p = 0.03) Depressive episodes were not associated to sNfL values. (R = 0.311, p = n.s.) Patients with >3 years of illness duration showed significantly higher levels of sNfL (M18.59; SD 11.89) than patients with shorter illness duration (M = 12.38, p = 0.03) and HC (M = 11.35, p = 0.02). Patients with <3 years of illness and HC did not differ significantly in sNfL levels. DISCUSSION Interestingly, individuals with BD and HC did not differ in sNFL levels in general. Nevertheless, looking at the BD cohort more specifically, we found that individuals with BD with longer duration of illness (>3 years) had higher levels of sNfL than those with an illness duration below 3 years. Our results confirm previous reports on the relation of neuro-axonal injury as evidenced by sNfL and illness specific variables in bipolar disorder. Further studies are needed to clarify if sNfL may predict the disease course and/or indicated response to treatment regimes.
Collapse
Affiliation(s)
- R Queissner
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Buchmann
- Medical University of Graz, Department for Neurology, Austria
| | - R Demjaha
- Medical University of Graz, Department for Neurology, Austria
| | - C Tafrali
- Medical University of Graz, Department for Neurology, Austria
| | - P Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - J Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - A Jerkovic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - N Dalkner
- Medical University of Graz, Department for Psychiatry, Austria
| | - F Fellendorf
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Birner
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Platzer
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Tmava-Berisha
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Maget
- Medical University of Graz, Department for Psychiatry, Austria
| | - T Stross
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Lenger
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Häussl
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Khalil
- Medical University of Graz, Department for Neurology, Austria.
| | - E Reininghaus
- Medical University of Graz, Department for Psychiatry, Austria
| |
Collapse
|
4
|
Stavropoulou De Lorenzo S, Bakirtzis C, Konstantinidou N, Kesidou E, Parissis D, Evangelopoulos ME, Elsayed D, Hamdy E, Said S, Grigoriadis N. How Early Is Early Multiple Sclerosis? J Clin Med 2023; 13:214. [PMID: 38202221 PMCID: PMC10780129 DOI: 10.3390/jcm13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The development and further optimization of the diagnostic criteria for multiple sclerosis (MS) emphasize the establishment of an early and accurate diagnosis. So far, numerous studies have revealed the significance of early treatment administration for MS and its association with slower disease progression and better late outcomes of the disease with regards to disability accumulation. However, according to current research results, both neuroinflammatory and neurodegenerative processes may exist prior to symptom initiation. Despite the fact that a significant proportion of individuals with radiologically isolated syndrome (RIS) progress to MS, currently, there is no available treatment approved for RIS. Therefore, our idea of "early treatment administration" might be already late in some cases. In order to detect the individuals who will progress to MS, we need accurate biomarkers. In this review, we present notable research results regarding the underlying pathology of MS, as well as several potentially useful laboratory and neuroimaging biomarkers for the identification of high-risk individuals with RIS for developing MS. This review aims to raise clinicians' awareness regarding "subclinical" MS, enrich their understanding of MS pathology, and familiarize them with several potential biomarkers that are currently under investigation and might be used in clinical practice in the future for the identification of individuals with RIS at high risk for conversion to definite MS.
Collapse
Affiliation(s)
- Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | | | - Dina Elsayed
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Eman Hamdy
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Sameh Said
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| |
Collapse
|
5
|
Toscano S, Oteri V, Chisari CG, Finocchiaro C, Lo Fermo S, Valentino P, Bertolotto A, Zappia M, Patti F. Cerebrospinal fluid neurofilament light chains predicts early disease-activity in Multiple Sclerosis. Mult Scler Relat Disord 2023; 80:105131. [PMID: 37951096 DOI: 10.1016/j.msard.2023.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Among biomarkers of axonal damage, neurofilament light chains (NFL) seem to play a major role, representing a promising and interesting tool in Multiple Sclerosis (MS). Our aim was to explore the predictive role of cerebrospinal fluid (CSF) NFL in patients with a recent diagnosis of MS, naïve to any MS therapy. METHODS We retrospectively collected data of patients diagnosed with MS, referred to the Neurology Clinic of the University-Hospital G. Rodolico of Catania between January 1st 2005 and December 31st 2015. All patients underwent CSF collection at the time of MS diagnosis and were followed-up for at least three years afterwards. NFL levels were measured in CSF samples with Simoa NFLight advantage kit at the CRESM (University Hospital San Luigi Gonzaga, Orbassano, Torino). NFL levels were expressed as LogNFL. Symbol Digit Modalities test (SDMT) was performed at baseline, at 1-year and at 3-year follow-up. Multivariate logistic regression analysis was performed to investigate LogNFL as a potential risk factor of different clinical outcomes. RESULTS 244 MS patients (230 relapsing-remitting, RRMS; 94.3 %), with a mean age at diagnosis of 37.0 ± 11.1 years, were recruited. LogNFL did not correlate neither with EDSS score at diagnosis and at subsequent follow-up up to 12 years, nor with SDMT performed at diagnosis, at 1 year and at 3 years. LogNFL were an independent factor for the occurrence of at least one relapse during the first two years after MS diagnosis (OR = 2.75; 95 % CI 1.19-6.31; p = 0.02) and for the occurrence of gadolinium-enhanced (Gd+) lesions during the first 2 years from diagnosis at brain and spine MRI scans (OR = 3.45, 95 % CI 1.81-6.57; p < 0.001). CONCLUSION The detection of CSF NFL at the time of MS diagnosis can be a useful support to predict the two-year risk of clinical and radiological relapses, thus affecting therapeutic choices in the very early phases of the disease.
Collapse
Affiliation(s)
- Simona Toscano
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy; Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Vittorio Oteri
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy
| | - Clara Grazia Chisari
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy; Operative Unit of Multiple Sclerosis, University-Hospital G. Rodolico - San Marco, Catania, Italy
| | - Chiara Finocchiaro
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy
| | - Salvatore Lo Fermo
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy; Operative Unit of Multiple Sclerosis, University-Hospital G. Rodolico - San Marco, Catania, Italy
| | - Paola Valentino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; CRESM Biobank, University Hospital San Luigi Gonzaga, Regione Gonzole 10, Orbassano 10043, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Koelliker Hospital, C.so Galileo Ferraris, 247/255, Turin 10134, Italy
| | - Mario Zappia
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy
| | - Francesco Patti
- Department "GF Ingrassia", Section of Neurosciences, Neurology Clinic, University of Catania, Catania 9126, Italy; Operative Unit of Multiple Sclerosis, University-Hospital G. Rodolico - San Marco, Catania, Italy.
| |
Collapse
|
6
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Maroto-García J, Martínez-Escribano A, Delgado-Gil V, Mañez M, Mugueta C, Varo N, García de la Torre Á, Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin Chim Acta 2023; 548:117471. [PMID: 37419300 DOI: 10.1016/j.cca.2023.117471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Although there is currently no definite cure for MS, new therapies have recently been developed based on a continuous search for new biomarkers. DEVELOPMENT MS diagnosis relies on the integration of clinical, imaging and laboratory findings as there is still no singlepathognomonicclinical feature or diagnostic laboratory biomarker. The most commonly laboratory test used is the presence of immunoglobulin G oligoclonal bands (OCB) in cerebrospinal fluid of MS patients. This test is now included in the 2017 McDonald criteria as a biomarker of dissemination in time. Nevertheless, there are other biomarkers currently in use such as kappa free light chain, which has shown higher sensitivity and specificity for MS diagnosis than OCB. In addition, other potential laboratory tests involved in neuronal damage, demyelination and/or inflammation could be used for detecting MS. CONCLUSIONS CSF and serum biomarkers have been reviewed for their use in MS diagnosis and prognosis to stablish an accurate and prompt MS diagnosis, crucial to implement an adequate treatment and to optimize clinical outcomes over time.
Collapse
Affiliation(s)
- Julia Maroto-García
- Biochemistry Department, Clínica Universidad de Navarra, Spain; Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain.
| | - Ana Martínez-Escribano
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Laboratory Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-ARRIXACA, Murcia, Spain
| | - Virginia Delgado-Gil
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Minerva Mañez
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Carmen Mugueta
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Ángela García de la Torre
- Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Maximiliano Ruiz-Galdón
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
8
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
9
|
Camara-Lemarroy C, Silva C, Gohill J, Yong VW, Koch M. Serum neurofilament-light and glial fibrillary acidic protein levels in hydroxychloroquine-treated primary progressive multiple sclerosis. Eur J Neurol 2023; 30:187-194. [PMID: 36214614 DOI: 10.1111/ene.15588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In a recent trial, hydroxychloroquine (HCQ) treatment reduced the expected rate of disability worsening at 18 months in primary progressive multiple sclerosis (PPMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in multiple sclerosis. METHODS We measured NfL and GFAP levels in serum samples from 39 patients with inactive PPMS included in a phase II clinical trial of HCQ treatment in PPMS at multiple time points over 18 months, and investigated the association of these biomarkers with clinical disability at screening and during follow-up. Screening and 12-month retinal nerve fiber layer (RNFL) thickness was also recorded and analyzed. RESULTS NfL and GFAP levels increased over time, but only significantly from screening to month 6. NfL and GFAP levels did not significantly increase from month 6 up to month 18. At screening, NfL and GFAP levels did not correlate with the Expanded Disability Status Scale (EDSS), and GFAP but not NfL modestly correlated with Timed 25-Foot Walk test (T25FW). Screening NfL and GFAP levels did not predict disability worsening (≥20% worsening on the T25FW) at month 18. RNFL thickness decreased significantly from screening to month 12 and independently predicted disability worsening. CONCLUSIONS In this cohort of people with inactive PPMS, HCQ treatment attenuated the increase of NfL and GFAP after 6 months of treatment and up to 18 months of follow-up, suggesting a treatment effect of HCQ over these biomarkers. RNFL thickness, a marker of neuroaxonal atrophy, was associated with disability worsening, and should be explored further as a prognostic marker in this population.
Collapse
Affiliation(s)
- Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,UANL School of Medicine, Monterrey, Mexico
| | - Claudia Silva
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jit Gohill
- Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Koch
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Loonstra FC, de Ruiter LRJ, Koel-Simmelink MJA, Schoonheim MM, Strijbis EMM, Moraal B, Barkhof F, Uitdehaag BMJ, Teunissen C, Killestein J. Neuroaxonal and Glial Markers in Patients of the Same Age With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/2/e200078. [PMID: 36543540 PMCID: PMC9773420 DOI: 10.1212/nxi.0000000000200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The specificity of novel blood biomarkers for multiple sclerosis (MS)-related neurodegeneration is unclear because neurodegeneration also occurs during normal aging. To understand which aspects of neurodegeneration the serum biomarkers neurofilament light (sNfL), serum glial fibrillary acidic protein (sGFAP), and serum contactin-1 (sCNTN1) reflect, we here explore their cross-sectional association with disability outcome measures and MRI volumes in a unique cohort of people with MS (PwMS) of the same age. METHODS sNfL, sGFAP (both singe-molecule array technology) and sCNTN1 (Luminex) were measured in serum samples of 288 PwMS and 125 healthy controls (HCs) of the Project Y cohort, a population-based cross-sectional study of PwMS born in the Netherlands in 1966 and age-matched HC. RESULTS sNfL (9.83 pg/mL [interquartile range {IQR}: 7.8-12.0]) and sGFAP (63.7 pg/mL [IQR: 48.5-84.5]) were higher in PwMS compared with HC (sNfL: 8.8 pg/mL [IQR: 7.0-10.5]; sGFAP: 51.7 pg/mL [IQR: 40.1-68.3]) (p < 0.001), whereas contactin-1 (7,461.3 pg/mL [IQR: 5,951.8-9,488.6]) did not significantly differ between PwMS compared with HC (7,891.2 pg/mL [IQR: 6,120.0-10,265.8]) (p = 0.068). sNfL and sGFAP levels were 1.2-fold higher in secondary progressive patients (SPMS) compared with relapsing remitting patients (p = 0.009 and p = 0.043). Stratified by MS subtype, no relations were seen for CNTN1, whereas sNfL and sGFAP correlated with the Expanded Disability Status Scale (ρ = 0.43 and ρ = 0.39), Nine-Hole Peg Test, Timed 25-Foot Walk Test, and Symbol Digit Modalities Test (average ρ = 0.38) only in patients with SPMS. Parallel to these clinical findings, correlations were only found for sNfL and sGFAP with MRI volumes. The strongest correlations were observed between sNfL and thalamic volume (ρ = -0.52) and between sGFAP with deep gray matter volume (ρ = - 0.56) in primary progressive patients. DISCUSSION In our cohort of patients of the same age, we report consistent correlations of sNfL and sGFAP with a range of metrics, especially in progressive MS, whereas contactin-1 was not related to clinical or MRI measures. This demonstrates the potential of sNfL and sGFAP as complementary biomarkers of neurodegeneration, reflected by disability, in progressive MS.
Collapse
Affiliation(s)
- Floor C Loonstra
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom.
| | - Lodewijk R J de Ruiter
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Marleen J A Koel-Simmelink
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Menno M Schoonheim
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Eva M M Strijbis
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Bastiaan Moraal
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Frederik Barkhof
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Bernard M J Uitdehaag
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Charlotte Teunissen
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Joep Killestein
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| |
Collapse
|
11
|
Javadi AHS, Shafikhani AA, Beizapour N. Evaluation of the determinants of cognitive dysfunction in patients with multiple sclerosis. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Cognitive dysfunction is common among patients with multiple sclerosis (MS); however, the determinants of cognitive dysfunction are still unknown. This study aimed to investigate the determinants of cognitive dysfunction in a relatively large sample of patients with MS for rapid screening.
Results
Fifty-three patients (33.6%) had cognitive dysfunction. According to the Wechsler Memory Scale, patients with relapsing-remitting MS (RRMS) and patients with progressive MS (PMS) had significantly lower scores than the control group. Patients with RRMS compared to the control group were 76.73 ± 8.50 versus 105.58 ± 8.71 (P < 0.01), and patients with PMS compared to the control group were 72.56 ± 6.44 versus 105.58 ± 8.71 (P < 0.01). In patients with RRMS, the factors affecting the emergence of cognitive dysfunction included disability, fatigue, depression, and duration of illness, whereas in patients with PMS, just the disability variable was related to the presence or absence of cognitive dysfunction.
Conclusions
Our findings showed that disability, fatigue, depression, and duration of illness were factors associated with cognitive dysfunction in patients with RRMS. Proper identification of these factors can be helpful in the screening of cognitive dysfunction in this population.
Collapse
|
12
|
Ning L, Wang B. Neurofilament light chain in blood as a diagnostic and predictive biomarker for multiple sclerosis: A systematic review and meta-analysis. PLoS One 2022; 17:e0274565. [PMID: 36103562 PMCID: PMC9473405 DOI: 10.1371/journal.pone.0274565] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Neurofilament light chain (NfL) in cerebrospinal fluid (CSF) is a biomarker of multiple sclerosis (MS). However, CSF sampling is invasive and has limited the clinical application. With the development of highly sensitive single-molecule assay, the accurate quantification of the very low NfL levels in blood become feasible. As evidence being accumulated, we performed a meta-analysis to evaluate the diagnostic and predictive value of blood NfL in MS patients.
Methods
We performed literature search on PubMed, EMBASE, Web of Science and Cochrane Library from inception to May 31, 2022. The blood NfL differences between MS vs. controls, MS vs. clinically isolated syndrome (CIS), progressive MS (PMS) vs. relapsing-remitting MS (RRMS), and MS in relapse vs. MS in remission were estimated by standard mean difference (SMD) and corresponding 95% confidence interval (CI). Pooled hazard ratio (HR) and 95%CI were calculated to predict time to reach Expanded Disability Status Scale (EDSS) score≥4.0 and to relapse.
Results
A total of 28 studies comprising 6545 MS patients and 2477 controls were eligible for meta-analysis of diagnosis value, and 5 studies with 4444 patients were synthesized in analysis of predictive value. Blood NfL levels were significantly higher in MS patients vs. age-matched controls (SMD = 0.64, 95%CI 0.44–0.85, P<0.001), vs. non-matched controls (SMD = 0.76, 95%CI 0.56–0.96, P<0.001) and vs. CIS patients (SMD = 0.30, 95%CI 0.18–0.42, P<0.001), in PMS vs. RRMS (SMD = 0.56, 95%CI 0.27–0.85, P<0.001), and in relapsed patients vs. remitted patients (SMD = 0.54, 95%CI 0.16–0.92, P = 0.005). Patients with high blood NfL levels had shorter time to reach EDSS score≥4.0 (HR = 2.36, 95%CI 1.32–4.21, P = 0.004) but similar time to relapse (HR = 1.32, 95%CI 0.90–1.93, P = 0.155) compared to those with low NfL levels.
Conclusion
As far as we know, this is the first meta-analysis evaluating the diagnosis and predictive value of blood NfL in MS. The present study indicates blood NfL may be a useful biomarker in diagnosing MS, distinguishing MS subtypes and predicting disease worsening in the future.
Collapse
Affiliation(s)
- Liangxia Ning
- Department of Neurology, Yuncheng Central Hospital, The Eighth Shanxi Medical University, Yuncheng, China
| | - Bin Wang
- Department of Neurology, Yuncheng Central Hospital, The Eighth Shanxi Medical University, Yuncheng, China
- * E-mail:
| |
Collapse
|
13
|
Kölliker Frers RA, Otero-Losada M, Kobiec T, Udovin LD, Aon Bertolino ML, Herrera MI, Capani F. Multidimensional overview of neurofilament light chain contribution to comprehensively understanding multiple sclerosis. Front Immunol 2022; 13:912005. [PMID: 35967312 PMCID: PMC9368191 DOI: 10.3389/fimmu.2022.912005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by demyelination, progressive axonal loss, and varying clinical presentations. Axonal damage associated with the inflammatory process causes neurofilaments, the major neuron structural proteins, to be released into the extracellular space, reaching the cerebrospinal fluid (CSF) and the peripheral blood. Methodological advances in neurofilaments’ serological detection and imaging technology, along with many clinical and therapeutic studies in the last years, have deepened our understanding of MS immunopathogenesis. This review examines the use of light chain neurofilaments (NFLs) as peripheral MS biomarkers in light of the current clinical and therapeutic evidence, MS immunopathology, and technological advances in diagnostic tools. It aims to highlight NFL multidimensional value as a reliable MS biomarker with a diagnostic-prognostic profile while improving our comprehension of inflammatory neurodegenerative processes, mainly RRMS, the most frequent clinical presentation of MS.
Collapse
Affiliation(s)
- Rodolfo A. Kölliker Frers
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Matilde Otero-Losada
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- *Correspondence: Matilde Otero-Losada,
| | - Tamara Kobiec
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Lucas D. Udovin
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María Laura Aon Bertolino
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María I. Herrera
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Francisco Capani
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
14
|
Comabella M, Sastre-Garriga J, Carbonell-Mirabent P, Fissolo N, Tur C, Malhotra S, Pareto D, Aymerich FX, Río J, Rovira A, Tintoré M, Montalban X. Serum neurofilament light chain levels predict long-term disability progression in patients with progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329020. [PMID: 35487685 DOI: 10.1136/jnnp-2022-329020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
ObjectiveThere is a lack of sensitive and specific biomarkers for use in progressive multiple sclerosis (MS). The study aimed to assess the potential of serum neurofilament light chain (sNfL) levels as biomarker of disability progression in patients with progressive MS. METHODS We performed a prospective observational cohort study in 51 patients with progressive MS who participated in a 2-year phase II single-centre, randomised, double-blind, placebo-controlled trial of interferon-beta. Mean (SD) follow-up duration was 13.9 (6.2) years. Levels of sNfL were measured using a single molecule array immunoassay at baseline, 1, 2 and 6 years. Univariable and multivariable analyses were carried out to evaluate associations between sNfL levels and disability progression at short term (2 years), medium term (6 years) and long term (at the time of the last follow-up). RESULTS A sNfL cut-off value of 10.2 pg/mL at baseline discriminated between long-term progressors and non-progressors with a 75% sensitivity and 67% specificity (adjusted OR 7.8; 95% CI 1.8 to 46.4; p=0.01). Similar performance to discriminate between long-term progressors and non-progressors was observed using age/body mass index-adjusted sNfL Z-scores derived from a normative database of healthy controls. A cut-off increase of 5.1 pg/mL in sNfL levels between baseline and 6 years also discriminated between long-term progressors and non-progressors with a 71% sensitivity and 86% specificity (adjusted OR 49.4; 95% CI 4.4 to 2×103; p=0.008). CONCLUSIONS sNfL can be considered a prognostic biomarker of future long-term disability progression in patients with progressive MS. These data expand the little knowledge existing on the role of sNfL as long-term prognostic biomarker in patients with progressive MS.
Collapse
Affiliation(s)
- Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Carbonell-Mirabent
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nicolás Fissolo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Tur
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc X Aymerich
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Jordi Río
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
16
|
Krajnc N, Bsteh G, Berger T. Clinical and Paraclinical Biomarkers and the Hitches to Assess Conversion to Secondary Progressive Multiple Sclerosis: A Systematic Review. Front Neurol 2021; 12:666868. [PMID: 34512500 PMCID: PMC8427301 DOI: 10.3389/fneur.2021.666868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Conversion to secondary progressive (SP) course is the decisive factor for long-term prognosis in relapsing multiple sclerosis (MS), generally considered the clinical equivalent of progressive MS-associated neuroaxonal degeneration. Evidence is accumulating that both inflammation and neurodegeneration are present along a continuum of pathologic processes in all phases of MS. While inflammation is the prominent feature in early stages, its quality changes and relative importance to disease course decreases while neurodegenerative processes prevail with ongoing disease. Consequently, anti-inflammatory disease-modifying therapies successfully used in relapsing MS are ineffective in SPMS, whereas specific treatment for the latter is increasingly a focus of MS research. Therefore, the prevention, but also the (anticipatory) diagnosis of SPMS, is of crucial importance. The problem is that currently SPMS diagnosis is exclusively based on retrospectively assessing the increase of overt physical disability usually over the past 6–12 months. This inevitably results in a delay of diagnosis of up to 3 years resulting in periods of uncertainty and, thus, making early therapy adaptation to prevent SPMS conversion impossible. Hence, there is an urgent need for reliable and objective biomarkers to prospectively predict and define SPMS conversion. Here, we review current evidence on clinical parameters, magnetic resonance imaging and optical coherence tomography measures, and serum and cerebrospinal fluid biomarkers in the context of MS-associated neurodegeneration and SPMS conversion. Ultimately, we discuss the necessity of multimodal approaches in order to approach objective definition and prediction of conversion to SPMS.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Measuring Treatment Response in Progressive Multiple Sclerosis-Considerations for Adapting to an Era of Multiple Treatment Options. Biomolecules 2021; 11:biom11091342. [PMID: 34572555 PMCID: PMC8470215 DOI: 10.3390/biom11091342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Disability in multiple sclerosis accrues predominantly in the progressive forms of the disease. While disease-modifying treatment of relapsing MS has drastically evolved over the last quarter-century, the development of efficient drugs for preventing or at least delaying disability in progressive MS has proven more challenging. In that way, many drugs (especially disease-modifying treatments) have been researched in the aspect of delaying disability progression in patients with a progressive course of the disease. While there are some disease-modifying treatments approved for progressive multiple sclerosis, their effect is moderate and limited mostly to patients with clinical and/or radiological signs of disease activity. Several phase III trials have used different primary outcomes with different time frames to define disease progression and to evaluate the efficacy of a disease-modifying treatment. The lack of sufficiently sensitive outcome measures could be a possible explanation for the negative clinical trials in progressive multiple sclerosis. On the other hand, even with a potential outcome measure that would be sensitive enough to determine disease progression and, thus, the efficacy or failure of a disease-modifying treatment, the question of clinical relevance remains unanswered. In this systematic review, we analyzed outcome measures and definitions of disease progression in phase III clinical trials in primary and secondary progressive multiple sclerosis. We discuss advantages and disadvantages of clinical and paraclinical outcome measures aiming for practical ways of combining them to detect disability progression more sensitively both in future clinical trials and current clinical routine.
Collapse
|
18
|
He L, Tessier DR, Briggs K, Tsangaris M, Charron M, McConnell EM, Lomovtsev D, Tabard-Cossa V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat Commun 2021; 12:5348. [PMID: 34504071 PMCID: PMC8429538 DOI: 10.1038/s41467-021-25566-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Single-molecule counting is the most accurate and precise method for determining the concentration of a biomarker in solution and is leading to the emergence of digital diagnostic platforms enabling precision medicine. In principle, solid-state nanopores—fully electronic sensors with single-molecule sensitivity—are well suited to the task. Here we present a digital immunoassay scheme capable of reliably quantifying the concentration of a target protein in complex biofluids that overcomes specificity, sensitivity, and consistency challenges associated with the use of solid-state nanopores for protein sensing. This is achieved by employing easily-identifiable DNA nanostructures as proxies for the presence (“1”) or absence (“0”) of the target protein captured via a magnetic bead-based sandwich immunoassay. As a proof-of-concept, we demonstrate quantification of the concentration of thyroid-stimulating hormone from human serum samples down to the high femtomolar range. Further optimization to the method will push sensitivity and dynamic range, allowing for development of precision diagnostic tools compatible with point-of-care format. The concentration of a biomarker in solution can be determined by counting single molecules. Here the authors report a digital immunoassay scheme with solid-state nanopore readout to quantify a target protein and use this to measure thyroid-stimulating hormone from human serum.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
19
|
Williams T, Zetterberg H, Chataway J. Neurofilaments in progressive multiple sclerosis: a systematic review. J Neurol 2021; 268:3212-3222. [PMID: 32447549 PMCID: PMC8357650 DOI: 10.1007/s00415-020-09917-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament proteins have been extensively studied in relapsing-remitting multiple sclerosis, where they are promising biomarkers of disease activity and treatment response. Their role in progressive multiple sclerosis, where there is a particularly urgent need for improved biomarkers, is less clear. The objectives of this systematic review are to summarise the literature on neurofilament light and heavy in progressive multiple sclerosis, addressing key questions. METHODS A systematic search of PubMed, Embase, Web of Science and Scopus identified 355 potential sources. 76 relevant sources were qualitatively reviewed using QUADAS-2 criteria, and 17 were identified as at low risk of bias. We summarise the findings from all relevant sources, and separately from the 17 high-quality studies. RESULTS Differences in neurofilament light between relapsing-remitting and progressive multiple sclerosis appear to be explained by differences in covariates. Neurofilament light is consistently associated with current inflammatory activity and future brain atrophy in progressive multiple sclerosis, and is consistently shown to be a marker of treatment response with immunosuppressive disease-modifying therapies. Associations with current or future disability are inconsistent, and there is no evidence of NFL being a responsive marker of purportedly neuroprotective treatments. Evidence on neurofilament heavy is more limited and inconsistent. CONCLUSIONS Neurofilament light has shown consistent utility as a biomarker of neuroinflammation, future brain atrophy and immunosuppressive treatment response at a group level. Neither neurofilament light or heavy has shown a consistent treatment response to neuroprotective disease-modifying therapies, which will require further data from successful randomised controlled trials.
Collapse
Affiliation(s)
- Thomas Williams
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeremy Chataway
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research, University College London Hospitals, London, UK
| |
Collapse
|
20
|
Szilasiova J, Mikula P, Rosenberger J, Fedicova M, Urban P, Frigova L, Vitkova M, Gdovinova Z, Hanes J, Stevens E. Associations between neurofilament light chain levels, disease activity and brain atrophy in progressive multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:304-311. [PMID: 34092793 DOI: 10.5507/bp.2021.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neurofilament light chain is a promising biomarker of disease activity and treatment response in relapsing-remitting multiple sclerosis (MS). Its role in progressive MS is less clear. AIM The aim of the study was to assess the relationship between plasma neurofilament light chain (pNfL) and disease activity as defined by the concept NEDA-3 (No Evident Disease Activity), and brain volumetry, in a cohort of patients with the progressive disease form (PMS). METHODS Levels of pNfL (SIMOA technology) were examined in 52 PMS patients and analysed in relationship to NEDA-3 status and annual brain volume loss (BVL) during the last 12 months. The statistical model was developed using logistic regression analysis, including demographic, clinical and magnetic resonance imaging (MRI) data as independent variables. Dependent variables were NEDA-3 status and BVL. RESULTS The mean age of the study participants (n=52, 50% females) was 45.85 (SD, 9.82) and the median disability score was 5.0 (IQR: 5.0-5.5). ROC analysis showed that pNfL predicts NEDA-3 (the sensitivity and specificity of the model were 77.8% and 87.6%, respectively, P<0.001) and abnormal BVL (the sensitivity and specificity were 96.6% and 68.2%, respectively, P<0.001). CONCLUSIONS The results show that pNfL levels are a useful biomarker of disease activity determined by NEDA-3 status, including brain MRI-volumetry, in patients with the progressive form of MS.
Collapse
Affiliation(s)
- Jarmila Szilasiova
- Department of Neurology, Pavol Jozef Safarik University in Kosice, Slovak Republic.,Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Pavol Mikula
- Department of Social and Behavioral Medicine, Pavol Jozef Safarik University in Kosice, Slovak Republic
| | - Jaroslav Rosenberger
- Department of Health Psychology and Methodology of Research, II. Internal Clinic, Pavol Jozef Safarik University in Kosice, Slovak Republic.,Olomouc University Social Health Institute, Palacky University Olomouc, Czech Republic
| | - Miriam Fedicova
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Peter Urban
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Slovak Republic
| | | | - Marianna Vitkova
- Department of Neurology, Pavol Jozef Safarik University in Kosice, Slovak Republic.,Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Zuzana Gdovinova
- Department of Neurology, Pavol Jozef Safarik University in Kosice, Slovak Republic.,Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,AXON Neuroscience R&D Services SE, Bratislava, Slovak Republic
| | - Eva Stevens
- AXON Neuroscience R&D Services SE, Bratislava, Slovak Republic
| |
Collapse
|
21
|
Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:642384. [PMID: 33889068 PMCID: PMC8055958 DOI: 10.3389/fnins.2021.642384] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease of the central nervous system characterized by demyelination and axonal damage. Diagnosis and prognosis are mainly assessed through clinical examination and neuroimaging. However, more sensitive biomarkers are needed to measure disease activity and guide treatment decisions in MS. Prompt and individualized management can reduce inflammatory activity and delay disease progression. Neurofilament Light chain (NfL), a neuron-specific cytoskeletal protein that is released into the extracellular fluid following axonal injury, has been identified as a biomarker of disease activity in MS. Measurement of NfL levels can capture the extent of neuroaxonal damage, especially in early stages of the disease. A growing body of evidence has shown that NfL in cerebrospinal fluid (CSF) and serum can be used as reliable indicators of prognosis and treatment response. More recently, NfL has been shown to facilitate individualized treatment decisions for individuals with MS. In this review, we discuss the characteristics that make NfL a highly informative biomarker and depict the available technologies used for its measurement. We further discuss the growing role of serum and CSF NfL in MS research and clinical settings. Finally, we address some of the current topics of debate regarding the use of NfL in clinical practice and examine the possible directions that this biomarker may take in the future.
Collapse
Affiliation(s)
- Carolina Ferreira-Atuesta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Saúl Reyes
- Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovanonni
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Sharmilee Gnanapavan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is a clinically heterogeneous disease, which complicates expectant management as well as treatment decisions. This review provides an overview of both well established and emerging predictors of disability worsening, including clinical factors, imaging factors, biomarkers and treatment strategies. RECENT FINDINGS In addition to well known clinical predictors (age, male sex, clinical presentation, relapse behaviour), smoking, obesity, vascular and psychiatric comorbidities are associated with subsequent disability worsening in persons with MS. A number of imaging features are predictive of disability worsening and are present to varying degrees in relapsing and progressive forms of MS. These include brain volumes, spinal cord atrophy, lesion volumes and optical coherence tomography features. Cerebrospinal and more recently blood biomarkers including neurofilament light show promise as more easily attainable biomarkers of future disability accumulation. Importantly, recent observational studies suggest that initiation of early-intensive therapy, as opposed to escalation based on breakthrough disease, is associated with decreased accumulation of disability overall, although randomized controlled trials investigating this question are underway. SUMMARY Understanding risk factors associated with disability progression can help to both counsel patients and enhance the clinician's availability to provide evidence-based treatment recommendations.
Collapse
|
23
|
Sucksdorff M, Matilainen M, Tuisku J, Polvinen E, Vuorimaa A, Rokka J, Nylund M, Rissanen E, Airas L. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 2021; 143:3318-3330. [PMID: 33006604 PMCID: PMC7719021 DOI: 10.1093/brain/awaa275] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022] Open
Abstract
Overactivation of microglia is associated with most neurodegenerative diseases. In this study we examined whether PET-measurable innate immune cell activation predicts multiple sclerosis disease progression. Activation of microglia/macrophages was measured using the 18-kDa translocator protein (TSPO)-binding radioligand 11C-PK11195 and PET imaging in 69 patients with multiple sclerosis and 18 age- and sex-matched healthy controls. Radioligand binding was evaluated as the distribution volume ratio from dynamic PET images. Conventional MRI and disability measurements using the Expanded Disability Status Scale were performed for patients at baseline and 4.1 ± 1.9 (mean ± standard deviation) years later. Fifty-one (74%) of the patients were free of relapses during the follow-up period. Patients had increased activation of innate immune cells in the normal-appearing white matter and in the thalamus compared to the healthy control group (P = 0.033 and P = 0.003, respectively, Wilcoxon). Forward-type stepwise logistic regression was used to assess the best variables predicting disease progression. Baseline innate immune cell activation in the normal-appearing white matter was a significant predictor of later progression when the entire multiple sclerosis cohort was assessed [odds ratio (OR) = 4.26; P = 0.048]. In the patient subgroup free of relapses there was an association between macrophage/microglia activation in the perilesional normal-appearing white matter and disease progression (OR = 4.57; P = 0.013). None of the conventional MRI parameters measured at baseline associated with later progression. Our results strongly suggest that innate immune cell activation contributes to the diffuse neural damage leading to multiple sclerosis disease progression independent of relapses.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Polvinen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Johanna Rokka
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, and University of Turku, Turku, Finland
| |
Collapse
|
24
|
Saraste M, Bezukladova S, Matilainen M, Tuisku J, Rissanen E, Sucksdorff M, Laaksonen S, Vuorimaa A, Kuhle J, Leppert D, Airas L. High serum neurofilament associates with diffuse white matter damage in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e926. [PMID: 33293460 PMCID: PMC7803327 DOI: 10.1212/nxi.0000000000000926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Objective To evaluate to which extent serum neurofilament light chain (NfL) increase is
related to diffusion tensor imaging–MRI measurable diffuse
normal-appearing white matter (NAWM) damage in MS. Methods Seventy-nine patients with MS and 10 healthy controls underwent MRI including
diffusion tensor sequences and serum NfL determination by single molecule
array (Simoa). Fractional anisotropy and mean, axial, and radial
diffusivities were calculated within the whole and segmented (frontal,
parietal, temporal, occipital, cingulate, and deep) NAWM. Spearman
correlations and multiple regression models were used to assess the
associations between diffusion tensor imaging, volumetric MRI data, and
NfL. Results Elevated NfL correlated with decreased fractional anisotropy and increased
mean, axial, and radial diffusivities in the entire and segmented NAWM (for
entire NAWM ρ = −0.49, p = 0.005;
ρ = 0.49, p = 0.005; ρ = 0.43,
p = 0.018; and ρ = 0.48,
p = 0.006, respectively). A multiple regression
model examining the effect of diffusion tensor indices on NfL showed
significant associations when adjusted for sex, age, disease type, the
expanded disability status scale, treatment, and presence of relapses. In
the same model, T2 lesion volume was similarly associated with NfL. Conclusions Our findings suggest that elevated serum NfL in MS results from neuroaxonal
damage both within the NAWM and focal T2 lesions. This pathologic
heterogeneity ought to be taken into account when interpreting NfL findings
at the individual patient level.
Collapse
Affiliation(s)
- Maija Saraste
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland.
| | - Svetlana Bezukladova
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Markus Matilainen
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Jouni Tuisku
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Eero Rissanen
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Marcus Sucksdorff
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Sini Laaksonen
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Anna Vuorimaa
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Jens Kuhle
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - David Leppert
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| | - Laura Airas
- From the Turku PET Centre, Turku University Hospital and University of Turku (M. Saraste, S.B., M.M., J.T., E.R., M. Sucksdorff, S.L., A.V., L.A.); Division of Clinical Neurosciences (E.R., M. Sucksdorff, S.L., A.V., L.A.), Turku University Hospital, Finland; and Departments of Medicine, Biomedicine and Clinical Research, Neurologic Clinic and Policlinic (J.K., D.L.), University Hospital Basel, Switzerland
| |
Collapse
|
25
|
Blood Neurofilament Light Chain: The Neurologist's Troponin? Biomedicines 2020; 8:biomedicines8110523. [PMID: 33233404 PMCID: PMC7700209 DOI: 10.3390/biomedicines8110523] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Blood neurofilament light chain (NfL) is a marker of neuro-axonal injury showing promising associations with outcomes of interest in several neurological conditions. Although initially discovered and investigated in the cerebrospinal fluid (CSF), the recent development of ultrasensitive digital immunoassay technologies has enabled reliable detection in serum/plasma, obviating the need for invasive lumbar punctures for longitudinal assessment. The most evidence for utility relates to multiple sclerosis (MS) where it serves as an objective measure of both the inflammatory and degenerative pathologies that characterise this disease. In this review, we summarise the physiology and pathophysiology of neurofilaments before focusing on the technological advancements that have enabled reliable quantification of NfL in blood. As the test case for clinical translation, we then highlight important recent developments linking blood NfL levels to outcomes in MS and the next steps to be overcome before this test is adopted on a routine clinical basis.
Collapse
|
26
|
Moccia M, Annovazzi P, Buscarinu MC, Calabrese M, Cavalla P, Cordioli C, Di Filippo M, Ferraro D, Gajofatto A, Gallo A, Lanzillo R, Laroni A, Lorefice L, Mallucchi S, Nociti V, Paolicelli D, Pinardi F, Prosperini L, Radaelli M, Ragonese P, Tomassini V, Tortorella C, Cocco E, Gasperini C, Solaro C. Harmonization of real-world studies in multiple sclerosis: Retrospective analysis from the rirems group. Mult Scler Relat Disord 2020; 45:102394. [PMID: 32683308 DOI: 10.1016/j.msard.2020.102394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Worldwide multiple sclerosis (MS) centers have coordinated their efforts to use data acquired in clinical practice for real-world observational studies. In this retrospective study, we aim to harmonize outcome measures, and to evaluate their heterogeneity within the Rising Italian Researchers in MS (RIReMS) study group. METHODS RIReMS members filled in a structured questionnaire evaluating the use of different outcome measures in clinical practice. Thereafter, thirty-four already-published papers from RIReMS centers were used for heterogeneity analyses, using the DerSimonian and Laird random-effects method to compute the between-study variance (τ2). RESULTS Based on questionnaire results, we defined basic modules for diagnosis and follow-up, consisting of outcome measures recorded by all participating centers at the time of diagnosis, and, then, at least annually; we also defined more detailed/optional modules, with outcome measures recorded less frequently and/or in the presence of specific clinical indications. Looking at heterogeneity, we found 5-year variance in age at onset (ES=27.34; 95%CI=26.18, 28.49; p<0.01; τ2=4.76), and 7% in female percent (ES=66.42; 95%CI=63.08, 69.76; p<0.01; τ2=7.15). EDSS variance was 0.2 in studies including patients with average age <36.1 years (ES=1.96; 95%CI=1.69, 2.24; p<0.01; τ2=0.19), or from 36.8 to 41.1 years (ES=2.70; 95%CI=2.39, 3.01; p<0.01; τ2=0.18), but increased to 3 in studies including patients aged >41.4 years (ES=4.37; 95%CI=3.40, 5.35; p<0.01; τ2=2.96). The lowest variance of relapse rate was found in studies with follow-up duration ≤2 years (ES=9.07; 95%CI=5.21, 12.93; p = 0.02; τ2=5.53), whilst the lowest variance in EDSS progression was found in studies with follow-up duration >2 years (ES=5.41; 95%CI=3.22, 7.60; p = 0.02; τ2=1.00). DISCUSSION We suggest common sets of biomarkers to be acquired in clinical practice, that can be used for research purposes. Also, we provide researchers with specific indications for improving inclusion criteria and data analysis, ultimately allowing data harmonization and high-quality collaborative studies.
Collapse
Affiliation(s)
- Marcello Moccia
- MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University of Naples, Italy.
| | | | - Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
| | | | - Paola Cavalla
- MS Center, Department of Neurosciences and Mental Health, AOU City of Health & Science University Hospital, Turin, Italy
| | - Cinzia Cordioli
- Multiple Sclerosis Center, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Italy
| | - Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberta Lanzillo
- MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University of Naples, Italy
| | - Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and Center of Excellence for Biomedical Research (CEBR), University of Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorena Lorefice
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Simona Mallucchi
- Multiple Sclerosis Centre, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Viviana Nociti
- Multiple Sclerosis Center, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | | | - Luca Prosperini
- Department of Neurosciences, Ospedale San Camillo Forlanini, Rome, Italy
| | - Marta Radaelli
- Department of Neurology, San Raffaele Hospital, Milan, Italy
| | - Paolo Ragonese
- Department of Biomedicine Neurosciences and advanced Diagnostic (BiND), University of Palermo, Italy
| | - Valentina Tomassini
- Institute for Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy; MS Centre, Neurology Unit, SS. Annunziata University Hospital, Chieti, Italy; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, United Kingdom
| | - Carla Tortorella
- Department of Neurosciences, Ospedale San Camillo Forlanini, Rome, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Claudio Gasperini
- Department of Neurosciences, Ospedale San Camillo Forlanini, Rome, Italy
| | - Claudio Solaro
- Rehabilitation Department, Mons. L. Novarese, Moncrivello, Vercelli, Italy
| |
Collapse
|
27
|
van Kempen ZLE, Kryscio RJ, Dalla Costa G. Serum neurofilament light as a prognostic marker for MS disability: Are we there yet? Neurology 2020; 94:1013-1014. [PMID: 32434864 DOI: 10.1212/wnl.0000000000009576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Zoé Léonie Elise van Kempen
- From the Department of Neurology (Z.L.E.K.), Amsterdam Neuroscience, Amsterdam MS Center, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Statistics, Department of Biostatistics (R.J.K.), the Sanders Brown Center on Aging, University of Kentucky, Lexington; and Institute of Experimental Neurology (G.D.C.), San Raffaele Hospital, Milan, Italy.
| | - Richard John Kryscio
- From the Department of Neurology (Z.L.E.K.), Amsterdam Neuroscience, Amsterdam MS Center, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Statistics, Department of Biostatistics (R.J.K.), the Sanders Brown Center on Aging, University of Kentucky, Lexington; and Institute of Experimental Neurology (G.D.C.), San Raffaele Hospital, Milan, Italy
| | - Gloria Dalla Costa
- From the Department of Neurology (Z.L.E.K.), Amsterdam Neuroscience, Amsterdam MS Center, Amsterdam University Medical Centers, Vrije Universiteit, the Netherlands; Department of Statistics, Department of Biostatistics (R.J.K.), the Sanders Brown Center on Aging, University of Kentucky, Lexington; and Institute of Experimental Neurology (G.D.C.), San Raffaele Hospital, Milan, Italy
| |
Collapse
|
28
|
Ferrazzano G, Crisafulli SG, Baione V, Tartaglia M, Cortese A, Frontoni M, Altieri M, Pauri F, Millefiorini E, Conte A. Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers. J Neurol 2020; 268:3626-3645. [PMID: 32504180 DOI: 10.1007/s00415-020-09964-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Most patients with multiple sclerosis presenting with a relapsing-remitting disease course at diagnosis transition to secondary progressive multiple sclerosis (SPMS) 1-2 decades after onset. SPMS is characterized by predominant neurodegeneration and atrophy. These pathogenic hallmarks result in unsatisfactory treatment response in SPMS patients. Therefore, early diagnosis of SPMS is necessary for prompt treatment decisions. The aim of this review was to assess neurophysiological and fluid biomarkers that have the potential to monitor disease progression and support early SPMS diagnosis. METHODS We performed a systematic review of studies that analyzed the role of neurophysiological techniques and fluid biomarkers in supporting SPMS diagnosis using the preferred reporting items for systematic reviews and meta-analyses statement. RESULTS From our initial search, we selected 24 relevant articles on neurophysiological biomarkers and 55 articles on fluid biomarkers. CONCLUSION To date, no neurophysiological or fluid biomarker is sufficiently validated to support the early diagnosis of SPMS. Neurophysiological measurements, including short interval intracortical inhibition and somatosensory temporal discrimination threshold, and the neurofilament light chain fluid biomarker seem to be the most promising. Cross-sectional studies on an adequate number of patients followed by longitudinal studies are needed to confirm the diagnostic and prognostic value of these biomarkers. A combination of neurophysiological and fluid biomarkers may be more sensitive in detecting SPMS conversion.
Collapse
Affiliation(s)
- Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, San Filippo Neri Hospital, Rome, Italy
| | - Marco Frontoni
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Flavia Pauri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
29
|
Systematic review of prediction models in relapsing remitting multiple sclerosis. PLoS One 2020; 15:e0233575. [PMID: 32453803 PMCID: PMC7250448 DOI: 10.1371/journal.pone.0233575] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
The natural history of relapsing remitting multiple sclerosis (RRMS) is variable and prediction of individual prognosis challenging. The inability to reliably predict prognosis at diagnosis has important implications for informed decision making especially in relation to disease modifying therapies. We conducted a systematic review in order to collate, describe and assess the methodological quality of published prediction models in RRMS. We searched Medline, Embase and Web of Science. Two reviewers independently screened abstracts and full text for eligibility and assessed risk of bias. Studies reporting development or validation of prediction models for RRMS in adults were included. Data collection was guided by the checklist for critical appraisal and data extraction for systematic reviews (CHARMS) and applicability and methodological quality assessment by the prediction model risk of bias assessment tool (PROBAST). 30 studies were included in the review. Applicability was assessed as high risk of concern in 27 studies. Risk of bias was assessed as high for all studies. The single most frequently included predictor was baseline EDSS (n = 11). T2 Lesion volume or number and brain atrophy were each retained in seven studies. Five studies included external validation and none included impact analysis. Although a number of prediction models for RRMS have been reported, most are at high risk of bias and lack external validation and impact analysis, restricting their application to routine clinical practice.
Collapse
|
30
|
Abdelhak A, Huss A, Stahmann A, Senel M, Krumbholz M, Kowarik MC, Havla J, Kümpfel T, Kleiter I, Wüstinger I, Zettl UK, Schwartz M, Roesler R, Friede T, Ludolph AC, Ziemann U, Tumani H. Explorative study of emerging blood biomarkers in progressive multiple sclerosis (EmBioProMS): Design of a prospective observational multicentre pilot study. Contemp Clin Trials Commun 2020; 18:100574. [PMID: 32478196 PMCID: PMC7251538 DOI: 10.1016/j.conctc.2020.100574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Defining clinical and subclinical progression in multiple sclerosis (MS) is challenging. Patient history, expanded disability status scale (EDSS), and magnetic resonance imaging (MRI) all have shortcomings and may underestimate disease dynamics. Emerging serum biomarkers such as glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) proved useful in many cross-sectional studies. However, longitudinal data on patients with progressive MS is scarce. Objectives To assess whether the serum biomarkers GFAP and NfL might differentiate between patients with progressive vs. non-progressive disease stages and predict the disease course according to the Lublin criteria. Methods EmBioProMS is a pilot, observational, prospective, multicentric study funded by the German Multiple Sclerosis Society (DMSG). 200 patients with MS according to the 2017 McDonald criteria and history of relapse-independent progression at any time (progressive MS, PMS), younger than 65 years, and with EDSS ≤ 6.5 will be recruited in 6 centres in Germany. At baseline, month 6, and 18, medical history, EDSS, Nine-Hole-Peg-Test (9-HPT), Timed-25-Foot-Walk-Test (T-25FW), Symbol-Digit-Modalities-Test (SDMT), serum GFAP, and NfL, MRI (at least baseline and month 18) and optional optical coherence tomography (OCT) will be performed. Disease progression before and during the study is defined by confirmed EDSS progression, increase by ≥ 20% in 9-HPT or T-25FW time. Conclusions This longitudinal multicentre study will reveal to what extent the prediction of disease progression in patients with PMS will be improved by the analysis of serum biomarkers in conjunction with routine clinical data and neuroimaging measures.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Andre Huss
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Alexander Stahmann
- MS Forschungs- und Projektentwicklungs-gGmbH, MS-Registry by the German MS-Society, Hanover, Germany
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Markus Krumbholz
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Markus C. Kowarik
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Ingo Kleiter
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
- St. Josef-Hospital, Department of Neurology, Ruhr-University, Bochum, Germany
| | - Isabella Wüstinger
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Margit Schwartz
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Romy Roesler
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | | | - Ulf Ziemann
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
- Corresponding author. Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, 89081, Ulm, Germany.
| |
Collapse
|
31
|
Zetterberg H. Plasma neurofilament light in progressive multiple sclerosis. Acta Neurol Scand 2020; 141:14-15. [PMID: 31618445 DOI: 10.1111/ane.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
| |
Collapse
|