1
|
Foltan M, Dinh D, Gruber M, Müller T, Hart C, Krenkel L, Schmid C, Lehle K. Incidence of neutrophil extracellular traps (NETs) in different membrane oxygenators: pilot in vitro experiments in commercially available coated membranes. J Artif Organs 2025:10.1007/s10047-024-01486-4. [PMID: 39775204 DOI: 10.1007/s10047-024-01486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Neutrophil extracellular traps (NETs) were detected in blood samples and in cellular deposits of oxygenator membranes during extracorporeal membrane oxygenation (ECMO) therapy and may be responsible for thrombogenesis. The aim was to evaluate the effect of the base material of gas fiber (GF, polymethylpentene) and heat exchange (HE) membranes and different antithrombogenic coatings on isolated granulocytes from healthy volunteers under static culture conditions. Contact of granulocytes with membranes from different ECMO oxygenators (with different surface coatings) and uncoated-GFs allowed detection of adherent cells and NETotic nuclear structures (normal, swollen, ruptured) using nuclear staining. Flow cytometry was used to identify cell activation (CD11b/CD62L, oxidative burst) of non-adherent cells. Uncoated-GFs were used as a reference. Within 3 h, granulocytes adhered to the same extent on all surfaces. In contrast, the ratio of normal to NETotic cells was significantly higher for uncoated-GFs (56-83%) compared to all coated GFs (34-72%) (p < 0.001) with no difference between the coatings. After material contact, non-adherent cells remained vital with unchanged oxidative burst function and the proportion of activated cells remained low. The expression of activation markers was independent of the origin of the GF material. In conclusion, the polymethylpentene surfaces of the GFs already induce NET formation. Antithrombogenic coatings can already reduce the proportion of NETotic nuclei. However, it cannot be ruled out that NET formation can induce thrombotic events. Therefore, new surfaces or coatings are required for future ECMO systems and long-term implantable artificial lungs.
Collapse
Affiliation(s)
- M Foltan
- Department for Cardiac, Thoracic and Cardiovascular Surgery, University Hospital Regensburg, Regensburg, Germany.
| | - D Dinh
- Department for Cardiac, Thoracic and Cardiovascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Gruber
- Department for Anaesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - T Müller
- Department for Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - C Hart
- Department for Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - L Krenkel
- Regensburg Center of Biomedical Engineering, University and OTH Regensburg, Regensburg, Germany
| | - C Schmid
- Department for Cardiac, Thoracic and Cardiovascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - K Lehle
- Department for Cardiac, Thoracic and Cardiovascular Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Wagner MS, Kranz M, Krenkel L, Pointner D, Foltan M, Lubnow M, Lehle K. Computer based visualization of clot structures in extracorporeal membrane oxygenation and histological clot investigations for understanding thrombosis in membrane lungs. Front Med (Lausanne) 2024; 11:1416319. [PMID: 38962744 PMCID: PMC11219572 DOI: 10.3389/fmed.2024.1416319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) was established as a treatment for severe cardiac or respiratory disease. Intra-device clot formation is a common risk. This is based on complex coagulation phenomena which are not yet sufficiently understood. The objective was the development and validation of a methodology to capture the key properties of clots deposed in membrane lungs (MLs), such as clot size, distribution, burden, and composition. One end-of-therapy PLS ML was examined. Clot detection was performed using multidetector computed tomography (MDCT), microcomputed tomography (μCT), and photography of fiber mats (fiber mat imaging, FMI). Histological staining was conducted for von Willebrand factor (vWF), platelets (CD42b, CD62P), fibrin, and nucleated cells (4', 6-diamidino-2-phenylindole, DAPI). The three imaging methods showed similar clot distribution inside the ML. Independent of the imaging method, clot loading was detected predominantly in the inlet chamber of the ML. The μCT had the highest accuracy. However, it was more expensive and time consuming than MDCT or FMI. The MDCT detected the clots with low scanning time. Due to its lower resolution, it only showed clotted areas but not the exact shape of clot structures. FMI represented the simplest variant, requiring little effort and resources. FMI allowed clot localization and calculation of clot volume. Histological evaluation indicated omnipresent immunological deposits throughout the ML. Visually clot-free areas were covered with leukocytes and platelets forming platelet-leukocyte aggregates (PLAs). Cells were embedded in vWF cobwebs, while vWF fibers were negligible. In conclusion, the presented methodology allowed adequate clot identification and histological classification of possible thrombosis markers such as PLAs.
Collapse
Affiliation(s)
- Maria S. Wagner
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Kranz
- Department of Biofluid Mechanics, Faculty of Mechanical Engineering, Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering, Facility of University Regensburg and Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
| | - Lars Krenkel
- Department of Biofluid Mechanics, Faculty of Mechanical Engineering, Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering, Facility of University Regensburg and Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
| | - Daniel Pointner
- Department of Biofluid Mechanics, Faculty of Mechanical Engineering, Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering, Facility of University Regensburg and Technical University of Applied Sciences (OTH) Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Haus M, Foltan M, Philipp A, Mueller T, Gruber M, Lingel MP, Krenkel L, Lehle K. Neutrophil extracellular traps - a potential trigger for the development of thrombocytopenia during extracorporeal membrane oxygenation. Front Immunol 2024; 15:1339235. [PMID: 38449869 PMCID: PMC10914994 DOI: 10.3389/fimmu.2024.1339235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have recently emerged as a potential link between inflammation, immunity, and thrombosis, as well as other coagulation disorders which present a major challenge in the context of extracorporeal membrane oxygenation (ECMO). By examining blood from ECMO patients for NETs and their precursors and correlating them with clinical and laboratory biomarkers of coagulation and inflammation, this study aims to evaluate the association between the presence of NETs in the bloodstream of ECMO patients and the development of potentially severe coagulation disorders during ECMO therapy. Therefore, blood samples were collected from healthy volunteers (n=13) and patients receiving veno-venous (VV) ECMO therapy (n=10). To identify NETs and their precursors, DNA and myeloperoxidase as well as granulocyte marker CD66b were visualized simultaneously by immunofluorescence staining in serial blood smears. Differentiation of DNA-containing objects and identification of NETs and their precursors was performed semiautomatically by a specific algorithm using the shape and size of DNA staining and the intensity of MPO and CD66b signal. Neutrophil extracellular traps and their precursors could be detected in blood smears from patients requiring VV ECMO. Compared to volunteers, ECMO patients presented significantly higher rates of NETs and NET precursors as well as an increased proportion of neutrophil granulocytes in all detected nucleated cells. A high NET rate prior to the initiation of ECMO therapy was associated with both increased IL-6 and TNF-α levels as an expression of a high cytokine burden. These patients with increased NET release also presented an earlier and significantly more pronounced decrease in platelet counts and ATIII activity following initiation of therapy compared with patients with less elevated NETs. These findings provide further indications for the development of immune-mediated acquired thrombocytopenia in ECMO patients.
Collapse
Affiliation(s)
- Moritz Haus
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Alois Philipp
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Mueller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Maximilian P. Lingel
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars Krenkel
- Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Lingel MP, Haus M, Paschke L, Foltan M, Lubnow M, Gruber M, Krenkel L, Lehle K. Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation. Artif Organs 2023; 47:1720-1731. [PMID: 37525949 DOI: 10.1111/aor.14616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.
Collapse
Affiliation(s)
- Maximilian P Lingel
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Moritz Haus
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Paschke
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Lars Krenkel
- Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Hoeren F, Görmez Z, Richter M, Troidl K. Deetect: A Deep Learning-Based Image Analysis Tool for Quantification of Adherent Cell Populations on Oxygenator Membranes after Extracorporeal Membrane Oxygenation Therapy. Biomolecules 2022; 12:1810. [PMID: 36551238 PMCID: PMC9776364 DOI: 10.3390/biom12121810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The strong interaction of blood with the foreign surface of membrane oxygenators during ECMO therapy leads to adhesion of immune cells on the oxygenator membranes, which can be visualized in the form of image sequences using confocal laser scanning microscopy. The segmentation and quantification of these image sequences is a demanding task, but it is essential to understanding the significance of adhering cells during extracorporeal circulation. The aim of this work was to develop and test a deep learning-supported image processing tool (Deetect), suitable for the analysis of confocal image sequences of cell deposits on oxygenator membranes at certain predilection sites. Deetect was tested using confocal image sequences of stained (DAPI) blood cells that adhered to specific predilection sites (junctional warps and hollow fibers) of a phosphorylcholine-coated polymethylpentene membrane oxygenator after patient support (>24 h). Deetect comprises various functions to overcome difficulties that occur during quantification (segmentation, elimination of artifacts). To evaluate Deetects performance, images were counted and segmented manually as a reference and compared with the analysis by a traditional segmentation approach in Fiji and the newly developed tool. Deetect outperformed conventional segmentation in clustered areas. In sections where cell boundaries were difficult to distinguish visually, previously defined post-processing steps of Deetect were applied, resulting in a more objective approach for the resolution of these areas.
Collapse
Affiliation(s)
- Felix Hoeren
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Campus Kerckhoff, Justus Liebig University Giessen, 61231 Bad Nauheim, Germany
| | - Zeliha Görmez
- Department of Life Sciences and Engineering, TH Bingen, University of Applied Sciences, 55411 Bingen am Rhein, Germany
| | - Manfred Richter
- Campus Kerckhoff, Justus Liebig University Giessen, 61231 Bad Nauheim, Germany
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Kerstin Troidl
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Life Sciences and Engineering, TH Bingen, University of Applied Sciences, 55411 Bingen am Rhein, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
6
|
Umei N, Ichiba S, Genda Y, Mase H, Sakamoto A. Early predictors of oxygenator exchange during veno-venous extracorporeal membrane oxygenation: A retrospective analysis. Int J Artif Organs 2022; 45:927-935. [PMID: 35982583 DOI: 10.1177/03913988221118382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Oxygenator exchange during extracorporeal membrane oxygenation (ECMO) is a life-threatening procedure. D-dimer has been used to predict oxygenator failure, but it is a parameter used a few days before oxygenator exchange. This study investigated parameters before and immediately after ECMO initiation that predict oxygenator exchange. METHODS This was a single-center, retrospective study of 28 patients who received veno-venous ECMO with heparin/silicone-coated polypropylene oxygenator (NSH-R HPO-23WH-C; Senko Medical Inc., Tokyo, Japan), due to acute respiratory failure, from April 2015 to March 2020. Clinical data before ECMO initiation and during the first 3 days on ECMO were compared between the patients with oxygenator exchange (exchange group) and those without oxygenator exchange (non-exchange group). RESULTS Nine (32%) patients required oxygenator exchange. The exchange group had significantly higher white blood cell count (WBC) (16,944 ± 2423/µL vs 10,342 ± 1442/µL, p < 0.05) and Acute Physiology and Chronic Health Evaluation (APACHE) II score (31 ± 5 vs 25 ± 8, p < 0.05) before ECMO initiation than the non-exchange group. The partial pressure of oxygen at the outlet of the oxygenator (PO2 outlet) and activated partial thromboplastin time (aPTT) during the first 3 days on ECMO were significantly lower in the exchange group than in the non-exchange group. CONCLUSIONS High WBC and APACHE II score before ECMO initiation, low PO2 outlet, and aPTT during the first 3 days on ECMO were associated with oxygenator exchange during veno-venous ECMO. These parameters could be used to avoid unexpected oxygenator exchange.
Collapse
Affiliation(s)
- Nao Umei
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Shingo Ichiba
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Yuki Genda
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Hiroshi Mase
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, Shen LB, Dong J, Chen Y, Luo ZG. Generation of vascularized brain organoids to study neurovascular interactions. eLife 2022; 11:76707. [PMID: 35506651 PMCID: PMC9246368 DOI: 10.7554/elife.76707] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 12/05/2022] Open
Abstract
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche. Understanding how the organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases. However, studying most organs in live animals or humans is technically difficult, expensive and invasive. To address this issue, scientists have developed models called ‘organoids’ that recapitulate the development of organs using stem cells in the lab. These models are easier to study and manipulate than the live organs. Brain organoids have been used to recapitulate brain formation as well as developmental, degenerative and psychiatric brain conditions such as microcephaly, autism and Alzheimer’s disease. However, these brain organoids lack the vasculature (the network of blood vessels) that supplies a live brain with nutrients and regulates its development, and which has important roles in brain disorders. Partly due to this lack of blood vessels, brain organoids also do not develop a blood brain barrier, the structure that prevents certain contents of the blood, including pathogens, toxins and even certain drugs from entering the brain. These characteristics limit the utility of existing brain organoids. To overcome these limitations, Sun, Ju et al. developed brain organoids and blood vessel organoids independently, and then fused them together to obtain vascularized brain organoids. These fusion organoids developed a robust network of blood vessels that was well integrated with the brain cells, and produced more neural cell precursors than brain organoids that had not been fused. This result is consistent with the idea that blood vessels can regulate brain development. Analyzing the fusion organoids revealed that they contain structures similar to the blood-brain barrier, as well as microglial cells (immune cells specific to the brain). When exposed to lipopolysaccharide – a component of the cell wall of certain bacteria – these cells responded by initiating an immune response in the fusion organoids. Notably, the microglial cells were also able to engulf connections between brain cells, a process necessary for the brain to develop the correct structures and work normally. Sun, Ju et al. have developed a new organoid system that will be of broad interest to researchers studying interactions between the brain and the circulatory system. The development of brain-blood-barrier-like structures in the fusion organoids could also facilitate the development of drugs that can cross this barrier, making it easier to treat certain conditions that affect the brain. Refining this model to allow the fusion organoids to grow for longer times in the lab, and adding blood flow to the system will be the next steps to establish this system.
Collapse
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Ying Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li-Bing Shen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Sheikh M, Reig M, Vecino X, Lopez J, Rezakazemi M, Valderrama C, Cortina J. Liquid–Liquid membrane contactors incorporating surface skin asymmetric hollow fibres of poly(4-methyl-1-pentene) for ammonium recovery as liquid fertilisers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Abstract
Extracorporeal membrane oxygenation (ECMO) is a well-known therapy for refractory cardiac and respiratory failure. Stem cell therapy has been investigated as an adjunctive treatment for use during ECMO, but little is known about the viability of stem cells during ECMO support. We evaluated the viability and activity of mesenchymal stem cells (MSCs) in ex vivo circulation (EVC) conditions. The experimental groups were divided into two subgroups: EVC with oxygenator (OXY group) and EVC without oxygenator (Non-OXY group). Mesenchymal stem cells (1.0 × 10) were injected into the EVC system. Cell counting, a lactate dehydrogenase (LDH) cytotoxicity assay, and the mitochondrial functions of viable MSCs were analyzed. The post-EVC oxygen consumption rate (OCR) was significantly lower than the pre-EVC OCR, regardless of whether the oxygenator was used. The LDH levels were significantly higher in the OXY group than in the Non-OXY group. The cellular loss was mainly due to lysis of the cells whereas the loss of cellular activity was attributed to the nonphysiologic condition itself, as well as the oxygenator. We concluded that direct infusion of MSCs during ECMO support did not serve as adjunctive therapy. Further studies are needed to improve the viability in an ECMO setting.
Collapse
|
10
|
Adsorption of Blood Components to Extracorporeal Membrane Oxygenation (ECMO) Surfaces in Humans: A Systematic Review. J Clin Med 2020; 9:jcm9103272. [PMID: 33053879 PMCID: PMC7601136 DOI: 10.3390/jcm9103272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The accumulation of blood proteins and cells on extracorporeal membrane oxygenation (ECMO) circuits has been proposed as a contributing factor to the coagulopathic state of many patients. This systematic review aims to summarize and discuss the existing knowledge of blood components binding to the ECMO circuits in human patients. A systematic review was conducted using the Medline, PubMed and Embase databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven studies were included in this review. Three studies identified a leukocyte adhesion, three studies observed von Willebrand factor accumulation and four studies identified bound platelets on the surface of the circuits. Other identified components included fibrin, albumin, hemoglobin, erythrocytes, progenitor cells, fibronectin and IgG. This systematic review demonstrates the limited state of knowledge when it comes to adsorption to the ECMO circuits in humans. Most of the studies lacked insight or detail into the mechanisms of binding and the interactions between different components bound to the ECMO circuits. Further research is required to comprehensively characterize surface adsorption to ECMO circuits in humans and to define the specific mechanisms of binding, enabling improvements that increase biocompatibility between the blood-circuit interface in this important clinical setting.
Collapse
|
11
|
Ignatenko VY, Anokhina TS, Ilyin SO, Kostyuk AV, Bakhtin DS, Makarova VV, Antonov SV, Volkov AV. Phase Separation of Polymethylpentene Solutions for Producing Microfiltration Membranes. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Patry C, Doniga T, Lenz F, Viergutz T, Weiss C, Tönshoff B, Kalenka A, Yard B, Krebs J, Schaible T, Beck G, Rafat N. Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. PLoS One 2020; 15:e0227460. [PMID: 31986159 PMCID: PMC6984734 DOI: 10.1371/journal.pone.0227460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/18/2019] [Indexed: 01/31/2023] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial and endothelial barrier dysfunction and injury. In severe forms of ARDS, extracorporeal membrane oxygenation (ECMO) is often the last option for life support. Endothelial progenitor (EPC) and mesenchymal stem cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. However, we still lack sufficient knowledge about how ECMO might affect EPC- and MSC-mediated regenerative pathways in ARDS. Therefore, we investigated if ECMO impacts EPC and MSC numbers in ARDS patients. Methods Peripheral blood mononuclear cells from ARDS patients undergoing ECMO (n = 16) and without ECMO support (n = 12) and from healthy volunteers (n = 16) were isolated. The number and presence of circulating EPC and MSC was detected by flow cytometry. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) were determined. Results In the ECMO group, MSC subpopulations were higher by 71% compared to the non-ECMO group. Numbers of circulating EPC were not significantly altered. During ECMO, VEGF and Ang2 serum levels remained unchanged compared to the non-ECMO group (p = 0.16), but Ang2 serum levels in non-survivors of ARDS were significantly increased by 100% (p = 0.02) compared to survivors. Conclusions ECMO support in ARDS is specifically associated with an increased number of circulating MSC, most likely due to enhanced mobilization, but not with a higher numbers of EPC or serum concentrations of VEGF and Ang2.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Thalia Doniga
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Franziska Lenz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Armin Kalenka
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Bergstraße, Heppenheim, Germany
| | - Benito Yard
- Department of Medicine V, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jörg Krebs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anaesthesiology and Intensive Care Medicine, Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Neysan Rafat
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
- * E-mail:
| |
Collapse
|
13
|
Ignatenko VY, Anokhina TS, Ilyin SO, Kostyuk AV, Bakhtin DS, Antonov SV, Volkov AV. Fabrication of microfiltration membranes from polyisobutylene/polymethylpentene blends. POLYM INT 2019. [DOI: 10.1002/pi.5932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viktoria Y Ignatenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| | - Tatyana S Anokhina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| | - Sergey O Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| | - Anna V Kostyuk
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| | - Danila S Bakhtin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| | - Sergey V Antonov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| | - Alexey V Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Moscow Russian Federation
| |
Collapse
|
14
|
Anokhina TS, Ilyin SO, Ignatenko VY, Bakhtin DS, Kostyuk AV, Antonov SV, Volkov AV. Formation of Porous Films with Hydrophobic Surface from a Blend of Polymers. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19050018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Steiger T, Foltan M, Philipp A, Mueller T, Gruber M, Bredthauer A, Krenkel L, Birkenmaier C, Lehle K. Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients? Artif Organs 2019; 43:1065-1076. [PMID: 31192471 PMCID: PMC6899554 DOI: 10.1111/aor.13513] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Abstract
Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.
Collapse
Affiliation(s)
- Tamara Steiger
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Alois Philipp
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Thomas Mueller
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Andre Bredthauer
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Lars Krenkel
- Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Clemens Birkenmaier
- Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Rafat N, Patry C, Sabet U, Viergutz T, Weiss C, Tönshoff B, Beck G, Schaible T. Endothelial Progenitor and Mesenchymal Stromal Cells in Newborns With Congenital Diaphragmatic Hernia Undergoing Extracorporeal Membrane Oxygenation. Front Pediatr 2019; 7:490. [PMID: 31824902 PMCID: PMC6882772 DOI: 10.3389/fped.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Endothelial progenitor (EPC) and mesenchymal stromal cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. We do not know, how extracorporeal membrane oxygenation (ECMO) might affect EPC- and MSC-mediated regenerative pathways in patients with congenital diaphragmatic hernia (CDH). Therefore, we investigated, if ECMO support impacts EPC and MSC numbers in CDH patients. Methods: Peripheral blood mononuclear cells from newborns with ECMO-dependent (n = 18) and ECMO-independent CDH (n = 12) and from healthy controls (n = 12) were isolated. The numbers of EPC and MSC were identified by flowcytometry. Serum levels of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined. Results: EPC and MSC were elevated in newborns with CDH. ECMO-dependent infants had higher EPC subpopulation counts (2,1-7,6-fold) before treatment compared to ECMO-independent infants. In the disease course, EPC and MSC subpopulation counts in ECMO-dependent infants were lower than before ECMO initiation. During ECMO, VEGF serum levels were significantly reduced (by 90.5%) and Ang2 levels significantly increased (by 74.8%). Conclusions: Our data suggest that ECMO might be associated with a rather impaired mobilization of EPC and MSC and with a depression of VEGF serum levels in newborns with CDH.
Collapse
Affiliation(s)
- Neysan Rafat
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
| | - Christian Patry
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Ursula Sabet
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christel Weiss
- Department for Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anesthesiology, Helios Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
17
|
Leukocyte Adhesion as an Indicator of Oxygenator Thrombosis During Extracorporeal Membrane Oxygenation Therapy? ASAIO J 2018; 64:24-30. [DOI: 10.1097/mat.0000000000000586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Abstract
In this Editor's Review, articles published in 2016 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Mechanical Circulatory Support, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We were pleased to publish our second Virtual Issue in April 2016 on "Tissue Engineering in Bone" by Professor Tsuyoshi Takato. Our first was published in 2011 titled "Intra-Aortic Balloon Pumping" by Dr. Ashraf Khir. Other peer-reviewed Special Issues this year included contributions from the 11th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Ündar and selections from the 23rd Congress of the International Society for Rotary Blood Pumps edited by Dr. Bojan Biocina. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|