1
|
Korte J, Lauwigi T, Herzog L, Theißen A, Suchorski K, Strudthoff LJ, Focke J, Jansen SV, Gries T, Rossaint R, Bleilevens C, Winnersbach P. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. BIOSENSORS 2024; 14:511. [PMID: 39451724 PMCID: PMC11506726 DOI: 10.3390/bios14100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Blood clot formation inside the membrane oxygenator (MO) remains a risk in extracorporeal membrane oxygenation (ECMO). It is associated with thromboembolic complications and normally detectable only at an advanced stage. Established clinical monitoring techniques lack predictive capabilities, emphasizing the need for refinement in MO monitoring towards an early warning system. In this study, an MO was modified by integrating four sensor fibers in the middle of the hollow fiber mat bundle, allowing for bioimpedance measurement within the MO. The modified MO was perfused with human blood in an in vitro test circuit until fulminant clot formation. The optical analysis of clot residues on the extracted hollow fibers showed a clot deposition area of 51.88% ± 14.25%. This was detectable via an increased bioimpedance signal with a significant increase 5 min in advance to fulminant clot formation inside the MO, which was monitored by the clinical gold standard (pressure difference across the MO (dp-MO)). This study demonstrates the feasibility of detecting clot growth early and effectively by measuring bioimpedance within an MO using integrated sensor fibers. Thus, bioimpedance may even outperform the clinical gold standard of dp-MO as a monitoring method by providing earlier clot detection.
Collapse
Affiliation(s)
- Jan Korte
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.K.); (A.T.); (R.R.); (C.B.)
| | - Tobias Lauwigi
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany; (T.L.); (L.H.); (K.S.); (T.G.)
| | - Lisa Herzog
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany; (T.L.); (L.H.); (K.S.); (T.G.)
| | - Alexander Theißen
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.K.); (A.T.); (R.R.); (C.B.)
| | - Kai Suchorski
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany; (T.L.); (L.H.); (K.S.); (T.G.)
| | - Lasse J. Strudthoff
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (L.J.S.); (J.F.); (S.V.J.)
| | - Jannis Focke
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (L.J.S.); (J.F.); (S.V.J.)
| | - Sebastian V. Jansen
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (L.J.S.); (J.F.); (S.V.J.)
| | - Thomas Gries
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany; (T.L.); (L.H.); (K.S.); (T.G.)
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.K.); (A.T.); (R.R.); (C.B.)
| | - Christian Bleilevens
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.K.); (A.T.); (R.R.); (C.B.)
| | - Patrick Winnersbach
- Department of Anesthesiology, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.K.); (A.T.); (R.R.); (C.B.)
| |
Collapse
|
2
|
van Minnen O, Oude Lansink-Hartgring A, Hoffmann RF, van den Bergh WM. Risk factors for elective and emergency oxygenator exchanges during veno-venous extracorporeal membrane oxygenation. Perfusion 2024; 39:911-920. [PMID: 36995209 PMCID: PMC11191661 DOI: 10.1177/02676591231168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Despite systemic anticoagulation and antithrombotic surface coating, oxygenator dysfunction remains one of most common technical complications of Extracorporeal membrane oxygenation (ECMO). Several parameters have been associated with an oxygenator exchange, but no guidelines for when to perform an exchange are published. An exchange, especially an emergency exchange, has a risk of complications. Therefore, a delicate balance between oxygenator dysfunction and the exchange of the oxygenator exists. This study aimed to identify risk factors and predictors for elective and emergency oxygenator exchanges. METHODS This observational cohort study included all adult patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO). We compared patients' characteristics and laboratory values of patients with and without an oxygenator exchange and between an elective and emergency exchange, defined as an exchange outside office hours. Risk factors for an oxygenator exchange were identified with cox regression analyses, and risk factors for an emergency exchange were identified with logistic regression analyses. RESULTS We included forty-five patients in the analyses. There were twenty-nine oxygenator exchanges in nineteen patients (42%). More than a third of the exchanges were emergency exchanges. Higher partial pressure of carbon dioxide (PaCO2), transmembrane pressure difference (ΔP), and hemoglobin (Hb) were associated with an oxygenator exchange. Lower lactate dehydrogenase (LDH) was the only risk factor for an emergency exchange. CONCLUSION Oxygenator exchange is frequent during V-V ECMO support. PaCO2, ΔP and Hb were associated with an oxygenator exchange and lower LDH with the risk of an emergency exchange.
Collapse
Affiliation(s)
- Olivier van Minnen
- Department of Critical Care of the University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Roland F Hoffmann
- Department of Cardiothoracic Surgery, Section Extracorporeal Circulation of the University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter M van den Bergh
- Department of Critical Care of the University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Leerson J, Tulloh A, Lopez FT, Gregory S, Buscher H, Rosengarten G. Detecting Oxygenator Thrombosis in ECMO: A Review of Current Techniques and an Exploration of Future Directions. Semin Thromb Hemost 2024; 50:253-270. [PMID: 37640048 DOI: 10.1055/s-0043-1772843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-support technique used to treat cardiac and pulmonary failure, including severe cases of COVID-19 (coronavirus disease 2019) involving acute respiratory distress syndrome. Blood clot formation in the circuit is one of the most common complications in ECMO, having potentially harmful and even fatal consequences. It is therefore essential to regularly monitor for clots within the circuit and take appropriate measures to prevent or treat them. A review of the various methods used by hospital units for detecting blood clots is presented. The benefits and limitations of each method are discussed, specifically concerning detecting blood clots in the oxygenator, as it is concluded that this is the most critical and challenging ECMO component to assess. We investigate the feasibility of solutions proposed in the surrounding literature and explore two areas that hold promise for future research: the analysis of small-scale pressure fluctuations in the circuit, and real-time imaging of the oxygenator. It is concluded that the current methods of detecting blood clots cannot reliably predict clot volume, and their inability to predict clot location puts patients at risk of thromboembolism. It is posited that a more in-depth analysis of pressure readings using machine learning could better provide this information, and that purpose-built imaging could allow for accurate, real-time clotting analysis in ECMO components.
Collapse
Affiliation(s)
- Jack Leerson
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
- Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia
| | - Andrew Tulloh
- Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia
| | - Francisco Tovar Lopez
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Shaun Gregory
- Department of Mechanical and Aerospace Engineering, Cardiorespiratory Engineering and Technology Laboratory, Monash University, Melbourne, Victoria, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, Australia
| | - Gary Rosengarten
- Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Fu X, Su Z, Wang Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. Comparison of hemodynamic features and thrombosis risk of membrane oxygenators with different structures: A numerical study. Comput Biol Med 2023; 159:106907. [PMID: 37075599 DOI: 10.1016/j.compbiomed.2023.106907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE The geometric structure of the membrane oxygenator can exert an impact on its hemodynamic features, which contribute to the development of thrombosis, thereby affecting the clinical efficacy of ECMO treatment. The purpose of this study is to investigate the impact of varying geometric structures on hemodynamic features and thrombosis risk of membrane oxygenators with different designs. METHODS Five oxygenator models with different structures, including different number and location of blood inlet and outlet, as well as variations in blood flow path, were established for investigation. These models are referred to as Model 1 (Quadrox-i Adult Oxygenator), Model 2 (HLS Module Advanced 7.0 Oxygenator), Model 3 (Nautilus ECMO Oxygenator), Model 4 (OxiaACF Oxygenator) and Model 5 (New design oxygenator). The hemodynamic features of these models were numerically analyzed using the Euler method combined with computational fluid dynamics (CFD). The accumulated residence time (ART) and coagulation factor concentrations (C[i], where i represents different coagulation factors) were calculated by solving the convection diffusion equation. The resulting relationships between these factors and the development of thrombosis in the oxygenator were then investigated. RESULTS Our results show that the geometric structure of the membrane oxygenator, including the location of the blood inlet and outlet as well as the design of the flow path, has a significant impact on the hemodynamic surroundings within the oxygenator. In comparison to Model 4, which had the inlet and outlet located in the center position, Model 1 and Model 3, which had the inlet and outlet at the edge of the blood flow field, exhibited a more uneven distribution of blood flow within the oxygenator, particularly in areas distant from the inlet and outlet, which was accompanied with lower flow velocity and higher values of ART and C[i], leading to the formation of flow dead zones and an elevated risk of thrombosis. The oxygenator of Model 5 is designed with a structure that features multiple inlets and outlets, which greatly improves the hemodynamic environment inside the oxygenator. This results in a more even distribution of blood flow within the oxygenator, reducing areas with high values of ART and C[i], and ultimately lowering the risk of thrombosis. The oxygenator of Model 3 with circular flow path section shows better hemodynamic performance compared to the oxygenator of Model 1 with square circular flow path. The overall ranking of hemodynamic performance for all five oxygenators is as follows: Model 5 > Model 4 > Model 2 > Model 3 > Model 1, indicating that Model 1 has the highest thrombosis risk while Model 5 has the lowest. CONCLUSION The study reveals that the different structures can affect the hemodynamic characteristics inside membrane oxygenators. The design of multiple inlets and outlets can improve the hemodynamic performance and reduce the thrombosis risk in membrane oxygenators. These findings of this study can be used to guide the optimization design of membrane oxygenators for improving hemodynamic surroundings and reducing thrombosis risk.
Collapse
Affiliation(s)
- Xingji Fu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zihua Su
- Beijing Aerospace Changfeng Co., Ltd., Beijing, 100854, China
| | - Yawei Wang
- Beijing Aerospace Changfeng Co., Ltd., Beijing, 100854, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
5
|
Türkmen M, Lauwigi T, Fechter T, Gries F, Fischbach A, Gries T, Rossaint R, Bleilevens C, Winnersbach P. Bioimpedance Analysis as Early Predictor for Clot Formation Inside a Blood-Perfused Test Chamber: Proof of Concept Using an In Vitro Test-Circuit. BIOSENSORS 2023; 13:394. [PMID: 36979606 PMCID: PMC10046027 DOI: 10.3390/bios13030394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Clot formation inside a membrane oxygenator (MO) due to blood-to-foreign surface interaction represents a frequent complication during extracorporeal membrane oxygenation. Since current standard monitoring methods of coagulation status inside the MO fail to detect clot formation at an early stage, reliable sensors for early clot detection are in demand to reduce associated complications and adverse events. Bioimpedance analysis offers a monitoring concept by integrating sensor fibers into the MO. Herein, the feasibility of clot detection via bioimpedance analysis is evaluated. A custom-made test chamber with integrated titanium fibers acting as sensors was perfused with heparinized human whole blood in an in vitro test circuit until clot formation occurred. The clot detection capability of bioimpedance analysis was directly compared to the pressure difference across the test chamber (ΔP-TC), analogous to the measurement across MOs (ΔP-MO), the clinical gold standard for clot detection. We found that bioimpedance measurement increased significantly 8 min prior to a significant increase in ΔP-TC, indicating fulminant clot formation. Experiments without clot formation resulted in a lack of increase in bioimpedance or ΔP-TC. This study shows that clot detection via bioimpedance analysis under flow conditions in a blood-perfused test chamber is generally feasible, thus paving the way for further investigation.
Collapse
Affiliation(s)
- Muhammet Türkmen
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Tobias Lauwigi
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany
| | - Tamara Fechter
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabienne Gries
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Fischbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Gries
- Institut für Textiltechnik (ITA), RWTH Aachen University, 52074 Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Patrick Winnersbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
6
|
Umei N, Ichiba S, Genda Y, Mase H, Sakamoto A. Early predictors of oxygenator exchange during veno-venous extracorporeal membrane oxygenation: A retrospective analysis. Int J Artif Organs 2022; 45:927-935. [PMID: 35982583 DOI: 10.1177/03913988221118382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Oxygenator exchange during extracorporeal membrane oxygenation (ECMO) is a life-threatening procedure. D-dimer has been used to predict oxygenator failure, but it is a parameter used a few days before oxygenator exchange. This study investigated parameters before and immediately after ECMO initiation that predict oxygenator exchange. METHODS This was a single-center, retrospective study of 28 patients who received veno-venous ECMO with heparin/silicone-coated polypropylene oxygenator (NSH-R HPO-23WH-C; Senko Medical Inc., Tokyo, Japan), due to acute respiratory failure, from April 2015 to March 2020. Clinical data before ECMO initiation and during the first 3 days on ECMO were compared between the patients with oxygenator exchange (exchange group) and those without oxygenator exchange (non-exchange group). RESULTS Nine (32%) patients required oxygenator exchange. The exchange group had significantly higher white blood cell count (WBC) (16,944 ± 2423/µL vs 10,342 ± 1442/µL, p < 0.05) and Acute Physiology and Chronic Health Evaluation (APACHE) II score (31 ± 5 vs 25 ± 8, p < 0.05) before ECMO initiation than the non-exchange group. The partial pressure of oxygen at the outlet of the oxygenator (PO2 outlet) and activated partial thromboplastin time (aPTT) during the first 3 days on ECMO were significantly lower in the exchange group than in the non-exchange group. CONCLUSIONS High WBC and APACHE II score before ECMO initiation, low PO2 outlet, and aPTT during the first 3 days on ECMO were associated with oxygenator exchange during veno-venous ECMO. These parameters could be used to avoid unexpected oxygenator exchange.
Collapse
Affiliation(s)
- Nao Umei
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Shingo Ichiba
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Yuki Genda
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Hiroshi Mase
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Hesselmann F, Halwes M, Bongartz P, Wessling M, Cornelissen C, Schmitz-Rode T, Steinseifer U, Jansen SV, Arens J. TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution. Sci Rep 2022; 12:7160. [PMID: 35504939 PMCID: PMC9065140 DOI: 10.1038/s41598-022-11175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Membrane lungs consist of thousands of hollow fiber membranes packed together as a bundle. The devices often suffer from complications because of non-uniform flow through the membrane bundle, including regions of both excessively high flow and stagnant flow. Here, we present a proof-of-concept design for a membrane lung containing a membrane module based on triply periodic minimal surfaces (TPMS). By warping the original TPMS geometries, the local permeability within any region of the module could be raised or lowered, allowing for the tailoring of the blood flow distribution through the device. By creating an iterative optimization scheme for determining the distribution of streamwise permeability inside a computational porous domain, the desired form of a lattice of TPMS elements was determined via simulation. This desired form was translated into a computer-aided design (CAD) model for a prototype device. The device was then produced via additive manufacturing in order to test the novel design against an industry-standard predicate device. Flow distribution was verifiably homogenized and residence time reduced, promising a more efficient performance and increased resistance to thrombosis. This work shows the promising extent to which TPMS can serve as a new building block for exchange processes in medical devices.
Collapse
Affiliation(s)
- Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany.
| | - Michael Halwes
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Patrick Bongartz
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Matthias Wessling
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Christian Cornelissen
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Sebastian Victor Jansen
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany.,Chair of Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering, Technology University of Twente, Enschede, The Netherlands
| |
Collapse
|
8
|
Hendrix RHJ, Kurniawati ER, Schins SFC, Maessen JG, Weerwind PW. Dynamic oxygenator blood volume during prolonged extracorporeal life support. PLoS One 2022; 17:e0263360. [PMID: 35108345 PMCID: PMC8809600 DOI: 10.1371/journal.pone.0263360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Current methods for identification of oxygenator clotting during prolonged extracorporeal life support include visual inspection, evaluation of oxygenator resistance and oxygen exchange performance, and assessment of clotting-related laboratory parameters. However, these observations do not provide a quantitative assessment of oxygenator clot formation. By measuring changes in the dynamic oxygenator blood volume this study aimed to evaluate the relation to oxygenator resistance and oxygen transfer performance. Sixty-seven oxygenators were studied during adult extracorporeal life support. Oxygenator blood volume, oxygenator resistance, and oxygen transfer efficiency were monitored. Oxygenator blood volume decreased with increasing runtime (r = -0.462; p <0.001). There was a statistically significant, fair negative correlation between oxygenator blood volume and oxygenator resistance (r = -0.476; p<0.001) in all oxygenators, which became stronger analyzing only exchanged oxygenators (r = -0.680; p<0.001) and oxygenators with an oxygenator blood volume <187 mL (r = 0.831; p<0.001). No relevant correlation between oxygenator blood volume and O2 transfer was found. Oxygenator blood volume declined over time and was clearly associated with an increasing oxygenator resistance during prolonged extracorporeal life support, though O2 transfer was less affected.
Collapse
Affiliation(s)
- Rik H. J. Hendrix
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| | - Eva R. Kurniawati
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sanne F. C. Schins
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jos G. Maessen
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Patrick W. Weerwind
- Department of Cardiothoracic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
9
|
Kaesler A, Rudawski FL, Zander MO, Hesselmann F, Pinar I, Schmitz-Rode T, Arens J, Steinseifer U, Clauser JC. In-Vitro Visualization of Thrombus Growth in Artificial Lungs Using Real-Time X-Ray Imaging: A Feasibility Study. Cardiovasc Eng Technol 2021; 13:318-330. [PMID: 34532837 PMCID: PMC9114054 DOI: 10.1007/s13239-021-00579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Extracorporeal membrane oxygenation has gained increasing attention in the treatment of patients with acute and chronic cardiopulmonary and respiratory failure. However, clotting within the oxygenators or other components of the extracorporeal circuit remains a major complication that necessitates at least a device exchange and bears risks of adverse events for the patients. In order to better predict thrombus growth within oxygenators, we present an approach for in-vitro visualization of thrombus growth using real-time X-ray imaging. METHODS An in-vitro test setup was developed using low-dose anticoagulated ovine blood and allowing for thrombus growth within 4 h. The setup was installed in a custom-made X-ray setup that uses phase-contrast for imaging, thus providing enhanced soft-tissue contrast, which improves the differentiation between blood and potential thrombus growth. During experimentation, blood samples were drawn for the analysis of blood count, activated partial thromboplastin time and activated clotting time. Additionally, pressure and flow data was monitored and a full 360° X-ray scan was performed every 15 min. RESULTS Thrombus formation indicated by a pressure drop and changing blood parameters was monitored in all three test devices. Red and white thrombi (higher/lower attenuation, respectively) were successfully segmented in one set of X-ray images. CONCLUSION We showed the feasibility of a new in-vitro method for real-time thrombus growth visualization by means of phase contrast X-ray imaging. In addition, with more blood parameters that are clinically relevant, this approach might contribute to improved oxygenator exchange protocols in the clinical routine.
Collapse
Affiliation(s)
- Andreas Kaesler
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Freya Lilli Rudawski
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Mark Oliver Zander
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Isaac Pinar
- Monash Institute of Medical Engineering and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany.,Chair of Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany.,Monash Institute of Medical Engineering and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Johanna Charlotte Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Sakurai H, Fujiwara T, Ohuchi K, Hijikata W, Inoue Y, Seki H, Tahara T, Yokota S, Ogata A, Mizuno T, Arai H. Novel application of indocyanine green fluorescence imaging for real-time detection of thrombus in a membrane oxygenator. Artif Organs 2021; 45:1173-1182. [PMID: 34037247 DOI: 10.1111/aor.13999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) plays an important role in the coronavirus disease 2019 (COVID-19) pandemic. Management of thrombi in ECMO is generally an important issue; especially in ECMO for COVID-19 patients who are prone to thrombus formation, the thrombus formation in oxygenators is an unresolved issue, and it is very difficult to deal with. To prevent thromboembolic complications, it is necessary to develop a method for early thrombus detection. We developed a novel method for detailed real-time observation of thrombi formed in oxygenators using indocyanine green (ICG) fluorescence imaging. The purpose of this study was to verify the efficacy of this novel method through animal experiments. The experiments were performed three times using three pigs equipped with veno-arterial ECMO comprising a centrifugal pump (CAPIOX SL) and an oxygenator (QUADROX). To create thrombogenic conditions, the pump flow rate was set at 1 L/min without anticoagulation. The diluted ICG (0.025 mg/mL) was intravenously administered at a dose of 10 mL once an hour. A single dose of ICG was 0.25mg. The oxygenator was observed with both an optical detector (PDE-neo) and the naked eye every hour after measurement initiation for a total of 8 hours. With this dose of ICG, we could observe it by fluorescence imaging for about 15 minutes. Under ICG imaging, the inside of the oxygenator was observed as a white area. A black dot suspected to be the thrombus appeared 6-8 hours after measurement initiation. The thrombus and the black dot on ICG imaging were finely matched in terms of morphology. Thus, we succeeded in real-time thrombus detection in an oxygenator using ICG imaging. The combined use of ICG imaging and conventional routine screening tests could compensate for each other's weaknesses and significantly improve the safety of ECMO.
Collapse
Affiliation(s)
- Hironobu Sakurai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuki Fujiwara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhiro Ohuchi
- Department of Advanced Surgical Technology Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Hijikata
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Yusuke Inoue
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan
| | - Haruna Seki
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Tahara
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachie Yokota
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asato Ogata
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Mizuno
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Umei N, Lai A, Miller J, Shin S, Roberts K, Ai Qatarneh S, Ichiba S, Sakamoto A, Cook KE. Establishment and evaluation of a rat model of extracorporeal membrane oxygenation (ECMO) thrombosis using a 3D-printed mock-oxygenator. J Transl Med 2021; 19:179. [PMID: 33910585 PMCID: PMC8081007 DOI: 10.1186/s12967-021-02847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Extracorporeal membrane oxygenation (ECMO) research using large animals requires a significant amount of resources, slowing down the development of new means of ECMO anticoagulation. Therefore, this study developed and evaluated a new rat ECMO model using a 3D-printed mock-oxygenator. Methods The circuit consisted of tubing, a 3D-printed mock-oxygenator, and a roller pump. The mock-oxygenator was designed to simulate the geometry and blood flow patterns of the fiber bundle in full-scale oxygenators but with a low (2.5 mL) priming volume. Rats were placed on arteriovenous ECMO at a 1.9 mL/min flow rate at two different heparin doses (n = 3 each): low (15 IU/kg/h for eight hours) versus high (50 IU/kg/h for one hour followed by 25 IU/kg/h for seven hours). The experiment continued for eight hours or until the mock-oxygenator failed. The mock-oxygenator was considered to have failed when its blood flow resistance reached three times its baseline resistance. Results During ECMO, rats maintained near-normal mean arterial pressure and arterial blood gases with minimal hemodilution. The mock-oxygenator thrombus weight was significantly different (p < 0.05) between the low (0.02 ± 0.006 g) and high (0.003 ± 0.001 g) heparin delivery groups, and blood flow resistance was also larger in the low anticoagulation group. Conclusions This model is a simple, inexpensive system for investigating new anticoagulation agents for ECMO and provides low and high levels of anticoagulation that can serve as control groups for future studies.
Collapse
Affiliation(s)
- Nao Umei
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan. .,Department of Anesthesiology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan. .,Department of Surgical Intensive Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan. .,Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| | - Angela Lai
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Jennifer Miller
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Suji Shin
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Kalliope Roberts
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Saif Ai Qatarneh
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Shingo Ichiba
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.,Department of Anesthesiology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.,Department of Anesthesiology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.,Department of Surgical Intensive Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
12
|
May AG, Omecinski KS, Frankowski BJ, Federspiel WJ. Effect of Hematocrit on the CO2 Removal Rate of Artificial Lungs. ASAIO J 2021; 66:1161-1165. [PMID: 33136604 PMCID: PMC8207609 DOI: 10.1097/mat.0000000000001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Extracorporeal CO2 removal (ECCO2R) can permit lung protective or noninvasive ventilation strategies in patients with chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS). With evidence supporting ECCO2R growing, investigating factors which affect CO2 removal is necessary. Multiple factors are known to affect the CO2 removal rate (vCO2) which can complicate the interpretation of changes in vCO2; however, the effect of hematocrit on the vCO2 of artificial lungs has not been investigated. This in vitro study evaluates the relationship between hematocrit level and vCO2 within an ECCO2R device. In vitro gas transfer was measured in bovine blood in accordance with the ISO 7199 standard. Plasma and saline were used to hemodilute the blood to hematocrits between 33% and 8%. The vCO2 significantly decreased as the blood was hemodiluted with saline and plasma by 42% and 32%, respectively, between a hematocrit of 33% and 8%. The hemodilution method did not significantly affect the vCO2. In conclusion, the hematocrit level significantly affects vCO2 and should be taken into account when interpreting changes in the vCO2 of an ECCO2R device.
Collapse
Affiliation(s)
- Alexandra G. May
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katelin S. Omecinski
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J. Frankowski
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J. Federspiel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Arens J, Grottke O, Haverich A, Maier LS, Schmitz-Rode T, Steinseifer U, Wendel H, Rossaint R. Toward a Long-Term Artificial Lung. ASAIO J 2020; 66:847-854. [PMID: 32740342 PMCID: PMC7386861 DOI: 10.1097/mat.0000000000001139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Only a very small portion of end-stage organ failures can be treated by transplantation because of the shortage of donor organs. Although artificial long-term organ support such as ventricular assist devices provide therapeutic options serving as a bridge-to-transplantation or destination therapy for end-stage heart failure, suitable long-term artificial lung systems are still at an early stage of development. Although a short-term use of an extracorporeal lung support is feasible today, the currently available technical solutions do not permit the long-term use of lung replacement systems in terms of an implantable artificial lung. This is currently limited by a variety of factors: biocompatibility problems lead to clot formation within the system, especially in areas with unphysiological flow conditions. In addition, proteins, cells, and fibrin are deposited on the membranes, decreasing gas exchange performance and thus, limiting long-term use. Coordinated basic and translational scientific research to solve these problems is therefore necessary to enable the long-term use and implantation of an artificial lung. Strategies for improving the biocompatibility of foreign surfaces, for new anticoagulation regimes, for optimization of gas and blood flow, and for miniaturization of these systems must be found. These strategies must be validated by in vitro and in vivo tests, which remain to be developed. In addition, the influence of long-term support on the pathophysiology must be considered. These challenges require well-connected interdisciplinary teams from the natural and material sciences, engineering, and medicine, which take the necessary steps toward the development of an artificial implantable lung.
Collapse
Affiliation(s)
- Jutta Arens
- From the Chair in Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, Enschede, The Netherlands
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - Oliver Grottke
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Axel Haverich
- Thoracic, Cardiac and Vascular Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars S. Maier
- Internal Medicine II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - H.P. Wendel
- Thoracic, Cardiac and Vascular Surgery, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Malchesky PS. Artificial Organs
2019: A year in review. Artif Organs 2020; 44:314-338. [DOI: 10.1111/aor.13650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
|
15
|
|