1
|
Marlar R, Abbas F, Obeid R, Frisbie S, Ghazoul A, Rezaee A, Sims J, Rampazzo A, Bassiri Gharb B. A meta-analysis of perfusion parameters affecting weight gain in ex vivo perfusion. Artif Organs 2025; 49:7-20. [PMID: 39157933 PMCID: PMC11687208 DOI: 10.1111/aor.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. METHODS A meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. RESULTS Overall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). CONCLUSIONS Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.
Collapse
Affiliation(s)
- Riley Marlar
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Fuad Abbas
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Rommy Obeid
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Sean Frisbie
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Adam Ghazoul
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Ava Rezaee
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Jack Sims
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | | | | |
Collapse
|
2
|
Muss TE, Loftin AH, Zamore ZH, Drivas EM, Guo YN, Zhang Y, Brassil J, Oh BC, Brandacher G. A Guide to the Implementation and Design of Ex Vivo Perfusion Machines for Vascularized Composite Allotransplantation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6271. [PMID: 39534373 PMCID: PMC11557116 DOI: 10.1097/gox.0000000000006271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Background Ex vivo machine perfusion (EVMP) is a versatile platform utilized in vascularized composite allotransplantation (VCA) to prolong preservation, salvage tissue, and evaluate graft viability. However, there is no consensus on best practices for VCA. This article discusses the common components, modifications, and considerations necessary for a successful VCA perfusion. Methods A systematic literature review was performed in several databases (PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov) to identify articles published on VCA EVMP (face, limb, abdominal wall, uterus, penis, and free flaps) before August 2022. Graft type and animal model, general perfusion parameters, core components of the circuit, and optional components for enhanced monitoring were extracted from the articles. Results A total of 1370 articles were screened, and 46 articles met inclusion criteria. Most articles (84.8%) were published in the last 10 years. Pigs were the main model used, but 10 protocols used human grafts. Free flaps were the most common graft type (41.3%), then upper extremities/forelimbs (28.3%), uteruses (17.4%), and hindlimbs (13.0%). Postperfusion replantation occurred in 15.2% of studies. Normothermic perfusion predominated (54.1%), followed by hypothermic (24.3%), and subnormothermic (21.6%). The majority of studies (87.0%) oxygenated their systems, most commonly with carbogen. Conclusions EVMP is a rapidly growing area of research. Leveraging EVMP in VCA can optimize VCA procedures and allow for expansion into replantation, flap salvage, and other areas of plastic surgery. Currently, VCA EVMP is achieved through a variety of approaches, but standardization is necessary to advance this technology and attain clinical translation.
Collapse
Affiliation(s)
- Tessa E. Muss
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Amanda H. Loftin
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Zachary H. Zamore
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Eleni M. Drivas
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yi-Nan Guo
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yichuan Zhang
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | | | - Byoung Chol Oh
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Gerald Brandacher
- From the Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Md
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Goutard M, Tawa P, Berkane Y, Andrews AR, Pendexter CA, de Vries RJ, Pozzo V, Romano G, Lancia HH, Filz von Reiterdank I, Bertheuil N, Rosales IA, How IDAL, Randolph MA, Lellouch AG, Cetrulo CL, Uygun K. Machine Perfusion Enables 24-h Preservation of Vascularized Composite Allografts in a Swine Model of Allotransplantation. Transpl Int 2024; 37:12338. [PMID: 38813393 PMCID: PMC11133529 DOI: 10.3389/ti.2024.12338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
The current gold standard for preserving vascularized composite allografts (VCA) is 4°C static cold storage (SCS), albeit muscle vulnerability to ischemia can be described as early as after 2 h of SCS. Alternatively, machine perfusion (MP) is growing in the world of organ preservation. Herein, we investigated the outcomes of oxygenated acellular subnormothermic machine perfusion (SNMP) for 24-h VCA preservation before allotransplantation in a swine model. Six partial hindlimbs were procured on adult pigs and preserved ex vivo for 24 h with either SNMP (n = 3) or SCS (n = 3) before heterotopic allotransplantation. Recipient animals received immunosuppression and were followed up for 14 days. Clinical monitoring was carried out twice daily, and graft biopsies and blood samples were regularly collected. Two blinded pathologists assessed skin and muscle samples. Overall survival was higher in the SNMP group. Early euthanasia of 2 animals in the SCS group was linked to significant graft degeneration. Analyses of the grafts showed massive muscle degeneration in the SCS group and a normal aspect in the SNMP group 2 weeks after allotransplantation. Therefore, this 24-h SNMP protocol using a modified Steen solution generated better clinical and histological outcomes in allotransplantation when compared to time-matched SCS.
Collapse
Affiliation(s)
- Marion Goutard
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Pierre Tawa
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Yanis Berkane
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Suivi Immunologique des Thérapeutiques Innovantes Laboratory, INSERM U1236, University of Rennes 1, Rennes, France
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| | - Alec R. Andrews
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Casie A. Pendexter
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Reinier J. de Vries
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Amsterdam University Medical Centers—Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Victor Pozzo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Golda Romano
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Hyshem H. Lancia
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Irina Filz von Reiterdank
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
- University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Suivi Immunologique des Thérapeutiques Innovantes Laboratory, INSERM U1236, University of Rennes 1, Rennes, France
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| | - Ivy A. Rosales
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Ira Doressa Anne L. How
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Mark A. Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Alexandre G. Lellouch
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Curtis L. Cetrulo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
| | - Korkut Uygun
- Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Boston, MA, United States
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Salehi S, Lippert Lozano E, Zhang Y, Guo Y, Liu R, Tran K, Messner F, Brandacher G, Grayson WL. Design of a Multiparametric Perfusion Bioreactor System for Evaluating Sub-Normothermic Preservation of Rat Abdominal Wall Vascularized Composite Allografts. Bioengineering (Basel) 2024; 11:307. [PMID: 38671729 PMCID: PMC11047557 DOI: 10.3390/bioengineering11040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models.
Collapse
Affiliation(s)
- Sara Salehi
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Ernesto Lippert Lozano
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Yichuan Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
| | - Yinan Guo
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
| | - Renee Liu
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Kenny Tran
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Franka Messner
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (Y.G.); (F.M.); (G.B.)
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Warren L. Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith 5023, Baltimore, MD 21231, USA; (S.S.); (E.L.L.); (R.L.); (K.T.)
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 2121, USA
| |
Collapse
|
5
|
Chen SF, Yang BY, Zhang TY, Song XY, Jia ZB, Chen LJ, Cui MY, Xu WJ, Peng J. Study on the preservation effects of the amputated forelimb by machine perfusion at physiological temperature. Chin J Traumatol 2024; 27:114-120. [PMID: 37311687 PMCID: PMC11075101 DOI: 10.1016/j.cjtee.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 06/15/2023] Open
Abstract
PURPOSE Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4 - 6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay, and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance. The p value of less than 0.05 was considered to indicate statistical significance. RESULTS In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) μm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape and the gap between muscle fibers increased, showing an intercellular distance of (41.66 ± 5.38) μm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.
Collapse
Affiliation(s)
| | - Bo-Yao Yang
- Medical School of PLA, Beijing, 100048, China
| | - Tie-Yuan Zhang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Xiang-Yu Song
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Zhi-Bo Jia
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Lei-Jia Chen
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Meng-Yi Cui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Wen-Jing Xu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiang Peng
- Guizhou Medical University, Guiyang, 550025, China; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
6
|
Orizondo RA, Bengur FB, Komatsu C, Strong KR, Federspiel WJ, Solari MG. Machine Perfusion Deters Ischemia-Related Derangement of a Rodent Free Flap: Development of a Model. J Surg Res 2024; 295:203-213. [PMID: 38035871 DOI: 10.1016/j.jss.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Machine perfusion can enable isolated support of composite tissues, such as free flaps. The goal of perfusion in this setting is to preserve tissues prior to transplantation or provide transient support at the wound bed. This study aimed to establish a rodent model of machine perfusion in a fasciocutaneous-free flap to serve as an affordable testbed and determine the potential of the developed support protocol to deter ischemia-related metabolic derangement. METHODS Rat epigastric-free flaps were harvested and transferred to a closed circuit that provides circulatory and respiratory support. Whole rat blood was recirculated for 8 h, while adjusting the flow rate to maintain arterial-like perfusion pressures. Blood samples were collected during support. Extracellular tissue lactate and glucose levels were characterized with a microdialysis probe and compared with warm ischemic, cold ischemic, and anastomosed-free flap controls. RESULTS Maintenance of physiologic arterial pressures (85-100 mmHg) resulted in average pump flow rates of 360-430 μL/min. Blood-based measurements showed maintained glucose and oxygen consumption throughout machine perfusion. Average normalized lactate to glucose ratio for the perfused flaps was 5-32-fold lower than that for the warm ischemic flap controls during hours 2-8 (P < 0.05). CONCLUSIONS We developed a rat model of ex vivo machine perfusion of a fasciocutaneous-free flap with maintained stable flow and tissue metabolic activity for 8 h. This model can be used to assess critical elements of support in this setting as well as explore other novel therapies and technologies to improve free tissue transfer.
Collapse
Affiliation(s)
- Ryan A Orizondo
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fuat Baris Bengur
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chiaki Komatsu
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly R Strong
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Federspiel
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Clinical and Translational Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
8
|
Duru Ç, Biniazan F, Hadzimustafic N, D'Elia A, Shamoun V, Haykal S. Review of machine perfusion studies in vascularized composite allotransplant preservation. FRONTIERS IN TRANSPLANTATION 2023; 2:1323387. [PMID: 38993931 PMCID: PMC11235328 DOI: 10.3389/frtra.2023.1323387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 07/13/2024]
Abstract
The applications of Vascularized composite allotransplantation (VCA) are increasing since the first successful hand transplantation in 1998. However, the abundance of muscle tissue makes VCA's vulnerable to ischemia-reperfusion injury (IRI), which has detrimental effects on the outcome of the procedure, restricting allowable donor-to-recipient time and limiting its widespread use. The current clinical method is Static cold storage (SCS) and this allows only 6 h before irreversible damage occurs upon reperfusion. In order to overcome this obstacle, the focus of research has been shifted towards the prospect of ex-vivo perfusion preservation which already has an established clinical role in solid organ transplants especially in the last decade. In this comprehensive qualitative review, we compile the literature on all VCA machine perfusion models and we aim to highlight the essentials of an ex vivo perfusion set-up, the different strategies, and their associated outcomes.
Collapse
Affiliation(s)
- Çağdaş Duru
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
| | - Nina Hadzimustafic
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew D'Elia
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Valentina Shamoun
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
- Plastic and Reconstructive Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Muss TE, Loftin AH, Oh BC, Brandacher G. Current opinion: advances in machine perfusion and preservation of vascularized composite allografts - will time still matter? Curr Opin Organ Transplant 2023; 28:419-424. [PMID: 37823760 DOI: 10.1097/mot.0000000000001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW A major hurdle hindering more widespread application of reconstructive transplantation is the very limited cold ischemia time (CIT) of vascularized composite allografts (VCAs). In this review, we discuss cutting edge machine perfusion protocols and preservation strategies to overcome this limitation. RECENT FINDINGS Several preclinical machine perfusion studies have demonstrated the multifactorial utility of this technology to extend preservation windows, assess graft viability prior to transplantation and salvage damaged tissue, yet there are currently no clinically approved machine perfusion protocols for reconstructive transplantation. Thus, machine perfusion remains an open challenge in VCA due to the complexity of the various tissue types. In addition, multiple other promising avenues to prolong preservation of composite allografts have emerged. These include cryopreservation, high subzero preservation, vitrification and nanowarming. Despite several studies demonstrating extended preservation windows, there are several limitations that must be overcome prior to clinical translation. As both machine perfusion and subzero preservation protocols have rapidly advanced in the past few years, special consideration should be given to their potential complementary utilization. SUMMARY Current and emerging machine perfusion and preservation technologies in VCA have great promise to transform the field of reconstructive transplantation, as every extra hour of CIT helps ease the complexities of the peri-transplant workflow. Amongst the many advantages, longer preservation windows may allow for elective procedures, improved matching, establishment of novel immunomodulatory protocols and global transport of grafts, ultimately enabling us the ability to offer this life changing procedure to more patients.
Collapse
Affiliation(s)
- Tessa E Muss
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
| | - Amanda H Loftin
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory
| |
Collapse
|
10
|
Lammers J, Al-Malak M, Kopparthy V, Figueroa BA, Rampazzo A, Bassiri Gharb B. Letter Regarding: Continuous Versus Pulsatile Flow in 24-Hour Vascularized Composite Allograft Machine Perfusion in Swine: A Pilot Study. J Surg Res 2023; 291:749-750. [PMID: 37394332 DOI: 10.1016/j.jss.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Jacob Lammers
- Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Mazen Al-Malak
- Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Varun Kopparthy
- Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brian A Figueroa
- Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Antonio Rampazzo
- Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Bahar Bassiri Gharb
- Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
11
|
Tawa P, Goutard M, Andrews AR, de Vries RJ, Rosales IA, Yeh H, Uygun B, Randolph MA, Lellouch AG, Uygun K, Cetrulo CL. Response Regarding: Continuous Versus Pulsatile Flow in 24-h Vascularized Composite Allograft Machine Perfusion in Swine: A Pilot Study. J Surg Res 2023; 291:751-753. [PMID: 37517972 DOI: 10.1016/j.jss.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Pierre Tawa
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts
| | - Marion Goutard
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts
| | - Alec R Andrews
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts
| | - Reinier J de Vries
- Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivy A Rosales
- Harvard Medical School, Boston, Massachusetts; Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts
| | - Heidi Yeh
- Harvard Medical School, Boston, Massachusetts; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Basak Uygun
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark A Randolph
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts
| | - Alexandre G Lellouch
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Korkut Uygun
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts.
| | - Curtis L Cetrulo
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts.
| |
Collapse
|
12
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Goutard M, de Vries RJ, Tawa P, Pendexter CA, Rosales IA, Tessier SN, Burlage LC, Lantieri L, Randolph MA, Lellouch AG, Cetrulo CL, Uygun K. Exceeding the Limits of Static Cold Storage in Limb Transplantation Using Subnormothermic Machine Perfusion. J Reconstr Microsurg 2023; 39:350-360. [PMID: 35764315 PMCID: PMC10848168 DOI: 10.1055/a-1886-5697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model. METHODS Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days. RESULTS Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613). CONCLUSION To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.
Collapse
Affiliation(s)
- Marion Goutard
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Reinier J. de Vries
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pierre Tawa
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
| | - Casie A. Pendexter
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Ivy A. Rosales
- Immunopathology Research Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts
| | - Shannon N. Tessier
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Laura C. Burlage
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Division of Plastic and Reconstructive Surgery within the Department of Surgery, Radboudumc, Radboud University, Nijmegen, the Netherlands
| | - Laurent Lantieri
- Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Mark A. Randolph
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
| | - Alexandre G. Lellouch
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Curtis L. Cetrulo
- Division of Plastic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
| | - Korkut Uygun
- Department of Surgery, Harvard Medical School, Harvard Medical School, Boston, Massachusetts
- Department of Research, Shriners Children’s, Boston, Massachusetts
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Meyers A, Pandey S, Kopparthy V, Sadeghi P, Clark RC, Figueroa B, Dasarathy S, Brunengraber H, Papay F, Rampazzo A, Bassiri Gharb B. Weight gain is an early indicator of injury in ex vivo normothermic limb perfusion (EVNLP). Artif Organs 2023; 47:290-301. [PMID: 36305734 PMCID: PMC10100395 DOI: 10.1111/aor.14442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE There are no established criteria for discontinuing ex vivo normothermic limb perfusion (EVNLP) before irreversible damage occurs. This study evaluates weight gain as an indicator of injury during EVNLP. METHODS Sixteen Yorkshire pig forelimbs were procured and preserved using EVNLP with a hemoglobin-based oxygen carrier (HBOC-201) or static cold storage. EVNLP continued until termination criteria were met: arterial pressure ≥ 115 mm Hg, compartment pressure > 30 mm Hg, or 20% reduction of oxygen saturation. Limb weight, contractility, hemodynamics, perfusate electrolytes, metabolites and gases were recorded. Muscles were biopsied 6-h, and muscle injury scores (MIS) calculated. Forearm compartment pressures and indocyanine green (ICG) angiography were recorded at endpoint. Outcomes were compared at 2%, 5%, 10%, and 20% limb weight gain. RESULTS EVNLP lasted 20 ± 3 h. Weight gain was observed after 13 ± 5 h (2%), 15 ± 6 h (5%), 16 ± 6 h (10%), and 19 ± 4 h (20%). Weight correlated positively with MIS (ρ = 0.92, p < 0.0001), potassium (ρ = -1.00, p < 0.0001), pressure (ρ = 0.78, p < 0.0001), and negatively with contractility (ρ = -0.96, p = 0.011). At 5% weight gain, MIS (p < 0.0001), potassium (p = 0.03), and lactate (p < 0.0001) were significantly higher than baseline. Median muscle contractility was 5 [3-5] at 2% weight gain, 4 [1-5] at 5%, 3 [0-4] and 2 [0-2] at 10% and 20%, respectively. At 20% weight gain, contractility was significantly lower than baseline (p = 0.003). Percent weight gain correlated negatively with endpoint ICG hoof fluorescence (r = -0.712, p = 0.047). CONCLUSIONS Weight gain correlated with microscopic muscle injury and was the earliest evidence of limb dysfunction. Weight gain may serve as a criterion for discontinuation of EVNLP.
Collapse
Affiliation(s)
- Abigail Meyers
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sonia Pandey
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Varun Kopparthy
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Brian Figueroa
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Srinivasan Dasarathy
- Department of Gastroenterology, Hepatology, Pathobiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Henri Brunengraber
- Department of Nutrition and Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Francis Papay
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
15
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Proof of Concept Study for a Closed Ex-Vivo Limb Perfusion System for 24-hour Subnormothermic Preservation Using Acellular Perfusate. J Trauma Acute Care Surg 2022; 93:S102-S109. [PMID: 35609333 DOI: 10.1097/ta.0000000000003688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The two approaches to vascularized tissue machine perfusion utilize either the open (non-pressurized) or closed (pressurized) perfusion system. Most studies describing isolated limb perfusion preservation rely on open perfusion systems and report tissue edema exceeding 40% after 12-14 hours of preservation.A variant of machine perfusion places the limb and perfusate into a reservoir closed to atmosphere. It is hypothesized that the reservoir pressure, acting as a transmural pressure, has the advantage of reducing edema formation by counteracting the hydrostatic pressure gradient from the perfusion pressure.This proof-of-concept study aim was to demonstrate feasibility of the ULiSSESTM device (closed, vertical perfusion system) to preserve forelimbs of Sus Scrofa swine for 24 hours of subnormothermic perfusion compared to an open, horizontal perfusion system. The ULiSSES™ is a compact, practical device that applies pulsatile, pressurized perfusion through the novel use of a diaphragm pump powered by compressed oxygen. METHODS Forelimbs from swine were preserved in ULiSSES™ device (closed perfusion system) (n = 9) and in an open perfusion system (n = 4) using sub-normothermic modified Krebs-Henseleit Solution. Physiological parameters were measured at the start and every 3 hours for 24 hours. Limbs were weighed prior to and post perfusion to compare weight gain. Edema and cellular integrity were evaluated using histopathology pre and post perfusion. RESULTS Closed perfusion system showed superiority compared to the open perfusion system in terms of oxygen consumption, reduction in vascular resistance, and overall tissue integrity. The closed perfusion system demonstrated a 21% reduction in weight gain compared to the open perfusion system and significantly reduced intracellular edema. CONCLUSION The ULiSSES™ closed, pressurized perfusion technology has translatable military applications with the potential to preserve porcine limbs for 24 hours with improved results compared to an open perfusion system. LEVEL OF EVIDENCE N/A.
Collapse
|
17
|
Figueroa BA, Said SA, Ordenana C, Rezaei M, Orfahli LM, Dubé GP, Papay F, Brunengraber H, Dasarathy S, Rampazzo A, Gharb BB. Ex vivo normothermic preservation of amputated limbs with a hemoglobin-based oxygen carrier perfusate. J Trauma Acute Care Surg 2022; 92:388-397. [PMID: 34510075 DOI: 10.1097/ta.0000000000003395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ex vivo normothermic limb perfusion (EVNLP) preserves amputated limbs under near-physiologic conditions. Perfusates containing red blood cells (RBCs) have shown to improve outcomes during ex vivo normothermic organ perfusion, when compared with acellular perfusates. To avoid limitations associated with the use of blood-based products, we evaluated the feasibility of EVNLP using a polymerized hemoglobin-based oxygen carrier-201 (HBOC-201). METHODS Twenty-four porcine forelimbs were procured from Yorkshire pigs. Six forelimbs underwent EVNLP with an HBOC-201-based perfusate, six with an RBC-based perfusate, and 12 served as static cold storage (SCS) controls. Ex vivo normothermic limb perfusion was terminated in the presence of systolic arterial pressure of 115 mm Hg or greater, fullness of compartments, or drop of tissue oxygen saturation by 20%. Limb contractility, weight change, compartment pressure, tissue oxygen saturation, oxygen uptake rates (OURs) were assessed. Perfusate fluid-dynamics, gases, electrolytes, metabolites, methemoglobin, creatine kinase, and myoglobin concentration were measured. Uniformity of skin perfusion was assessed with indocyanine green angiography and infrared thermography. RESULTS Warm ischemia time before EVNLP was 35.50 ± 8.62 minutes (HBOC-201), 30.17 ± 8.03 minutes (RBC) and 37.82 ± 10.45 (SCS) (p = 0.09). Ex vivo normothermic limb perfusion duration was 22.5 ± 1.7 hours (HBOC-201) and 28.2 ± 7.3 hours (RBC) (p = 0.04). Vascular flow (325 ± 25 mL·min-1 vs. 444.7 ± 50.6 mL·min-1; p = 0.39), OUR (2.0 ± 1.45 mL O2·min-1·g-1 vs. 1.3 ± 0.92 mL O2·min-1·g-1 of tissue; p = 0.80), lactate (14.66 ± 4.26 mmol·L-1 vs. 13.11 ± 6.68 mmol·L-1; p = 0.32), perfusate pH (7.53 ± 0.25 HBOC-201; 7.50 ± 0.23 RBC; p = 0.82), flexor (28.3 ± 22.0 vs. 27.5 ± 10.6; p = 0.99), and extensor (31.5 ± 22.9 vs. 28.8 ± 14.5; p = 0.82) compartment pressures, and weight changes (23.1 ± 3.0% vs. 13.2 ± 22.7; p = 0.07) were not significantly different between HBOC-201 and RBC groups, respectively. In HBOC-201 perfused limbs, methemoglobin levels increased, reaching 47.8 ± 12.1% at endpoint. Methemoglobin saturation did not affect OUR (ρ = -0.15, r2 = 0.022; p = 0.45). A significantly greater number of necrotic myocytes was found in the SCS group at endpoint (SCS, 127 ± 17 cells; HBOC-201, 72 ± 30 cells; RBC-based, 56 ± 40 cells; vs. p = 0.003). CONCLUSION HBOC-201- and RBC-based perfusates similarly support isolated limb physiology, metabolism, and function.
Collapse
Affiliation(s)
- Brian A Figueroa
- From the Department of Plastic Surgery (B.A.F., S.A.S., C.O., M.R., L.M.O., F.P., A.R., B.B.G.), Cleveland Clinic; Department of Nutrition (H.B.), School of Medicine, Case Western Reserve University; Department of Gastroenterology (S.D.), Cleveland Clinic, Cleveland, Ohio; and Hemoglobin Oxygen Therapeutics, LLC (G.P.D.), Souderton, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Valdivia E, Rother T, Yuzefovych Y, Hack F, Wenzel N, Blasczyk R, Krezdorn N, Figueiredo C. Genetic modification of limbs using ex vivo machine perfusion. Hum Gene Ther 2021; 33:460-471. [PMID: 34779223 DOI: 10.1089/hum.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic engineering is a promising tool to repair genetic disorders, improve graft function or to reduce immune responses towards the allografts. Ex vivo organ perfusion systems have the potential to mitigate ischemic-reperfusion injury, prolong preservation time or even rescue organ function. We aim to combine both technologies to develop a modular platform allowing the genetic modification of vascularized composite (VC) allografts. Rat hind limbs were perfused ex vivo under subnormothermic conditions with lentiviral vectors. Specific perfusion conditions such as controlled pressure, temperature and flow rates were optimized to support the genetic modification of the limbs. Genetic modification was detected in vascular, muscular and dermal limb tissues. Remarkably, skin follicular and interfollicular keratinocytes as well as endothelial cells (ECs) showed stable transgene expression. Furthermore, levels of injury markers such as lactate, myoglobin and lactate dehydrogenase (LDH) as well as histological analyses showed that ex vivo limb perfusion with lentiviral vectors did not cause tissue damage and limb cytokine secretion signatures were not significantly affected. The use of ex vivo VC perfusion in combination with lentiviral vectors allows an efficient and stable genetic modification of limbs representing a robust platform to genetically engineer limbs towards increasing graft survival after transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Tamina Rother
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Yuliia Yuzefovych
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Franziska Hack
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nadine Wenzel
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Rainer Blasczyk
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nicco Krezdorn
- Hannover Medical School, 9177, Clinic for Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover, Niedersachsen, Germany;
| | - Constanca Figueiredo
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| |
Collapse
|
19
|
Stone JP, Amin KR, Geraghty A, Kerr J, Shaw M, Dabare D, Wong JK, Brough D, Entwistle TR, Montero-Fernandez A, Fildes JE. Renal hemofiltration prevents metabolic acidosis and reduces inflammation during normothermic machine perfusion of the vascularized composite allograft-A preclinical study. Artif Organs 2021; 46:259-272. [PMID: 34662442 DOI: 10.1111/aor.14089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Recent experimental evidence suggests normothermic machine perfusion of the vascularized composite allograft results in improved preservation compared to static cold storage, with less reperfusion injury in the immediate post-operative period. However, metabolic acidosis is a common feature of vascularized composite allograft perfusion, primarily due to the inability to process metabolic by-products. We evaluated the impact of combined limb-kidney perfusion on markers of metabolic acidosis and inflammation in a porcine model. METHODS Ten paired pig forelimbs were used for this study, grouped as either limb-only (LO, n = 5) perfusion, or limb-kidney (LK, n = 5) perfusion. Infrared thermal imaging was used to determine homogeneity of perfusion. Lactate, bicarbonate, base, pH, and electrolytes, along with an inflammatory profile generated via the quantification of cytokines and cell-free DNA in the perfusate were recorded. RESULTS The addition of a kidney to a limb perfusion circuit resulted in the rapid stabilization of lactate, bicarbonate, base, and pH. Conversely, the LO circuit became progressively acidotic, correlating in a significant increase in pro-inflammatory cytokines. Global perfusion across the limb was more homogenous with LK compared to LO. CONCLUSION The addition of a kidney during limb perfusion results in significant improvements in perfusate biochemistry, with no evidence of metabolic acidosis.
Collapse
Affiliation(s)
- John P Stone
- The Ex-Vivo Research Centre, Nether Alderley, UK.,The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Kavit R Amin
- The Ex-Vivo Research Centre, Nether Alderley, UK.,The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Abbey Geraghty
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jak Kerr
- The Ex-Vivo Research Centre, Nether Alderley, UK.,The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Matthew Shaw
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dilan Dabare
- Department of Nephrology and Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jason K Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Timothy R Entwistle
- The Ex-Vivo Research Centre, Nether Alderley, UK.,The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Angeles Montero-Fernandez
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Pathology, Manchester Foundation Trust, Manchester, UK
| | - James E Fildes
- The Ex-Vivo Research Centre, Nether Alderley, UK.,The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
20
|
Rectus Abdominis Flap Replantation after 18 h Hypothermic Extracorporeal Perfusion-A Porcine Model. J Clin Med 2021; 10:jcm10173858. [PMID: 34501304 PMCID: PMC8432231 DOI: 10.3390/jcm10173858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cold storage remains the clinical standard for composite tissue preservation but is time-limited. A long ischemia time during surgery will adversely affect postoperative outcomes due to ischemia-reperfusion injury. Extracorporeal perfusion (ECP) seems to be a promising alternative for prolonged preservation, but more evidence is needed to support its use and to identify optimal perfusion fluids. This article assessed musculocutaneous flap vitality after prolonged ECP and compared outcomes after replantation to short static cold storage (SCS). Unilateral musculocutaneous rectus abdominis flaps were raised from 15 pigs and preserved by 4 h SCS (n = 5), 18 h mid-thermic ECP with Histidine–Tryptophan–Ketoglutarate (HTK, n = 5) or University of Wisconsin solution (UW, n = 5). Flaps were replanted and observed for 12 h. Skeletal muscle histology was assessed (score 0–12; high scores equal more damage), blood and perfusate samples were collected and weight was recorded as a marker for oedema. Mean histological scores were 4.0 after HTK preservation, 5.6 after UW perfusion and 5.0 after SCS (p = 0.366). Creatinine kinase (CK) was higher after ECP compared to SCS (p < 0.001). No weight increase was observed during UW perfusion, but increased 56% during HTK perfusion. Following 12 h reperfusion, mean weight gain reduced 39% in the HTK group and increased 24% in the UW group and 17% in the SCS group. To conclude, skeletal muscle seemed well preserved after 18 h ECP with HTK or UW perfusion, with comparable histological results to 4 h SCS upon short reperfusion. The high oedema rate during HTK perfusion remains a challenge that needs to be further addressed.
Collapse
|
21
|
Matar AJ, Crepeau RL, Mundinger GS, Cetrulo CL, Torabi R. Large Animal Models of Vascularized Composite Allotransplantation: A Review of Immune Strategies to Improve Allograft Outcomes. Front Immunol 2021; 12:664577. [PMID: 34276656 PMCID: PMC8278218 DOI: 10.3389/fimmu.2021.664577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Over the past twenty years, significant technical strides have been made in the area of vascularized composite tissue allotransplantation (VCA). As in solid organ transplantation, the allogeneic immune response remains a significant barrier to long-term VCA survival and function. Strategies to overcome acute and chronic rejection, minimize immunosuppression and prolong VCA survival have important clinical implications. Historically, large animals have provided a valuable model for testing the clinical translatability of immune modulating approaches in transplantation, including tolerance induction, co-stimulation blockade, cellular therapies, and ex vivo perfusion. Recently, significant advancements have been made in these arenas utilizing large animal VCA models. In this comprehensive review, we highlight recent immune strategies undertaken to improve VCA outcomes with a focus on relevant preclinical large animal models.
Collapse
Affiliation(s)
- Abraham J Matar
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Gerhard S Mundinger
- Department of Surgery, Division of Plastic and Reconstructive Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Curtis L Cetrulo
- Department of Surgery, Division of Plastic Surgery, Massachusetts General Hospital, Boston, MA, United States.,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Shriner's Hospital for Children, Department of Plastic and Reconstructive Surgery, Boston, MA, United States
| | - Radbeh Torabi
- Department of Surgery, Division of Plastic and Reconstructive Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
22
|
Tchouta LN, Alghanem F, Rojas-Pena A, Bartlett RH. Prolonged (≥24 Hours) Normothermic (≥32 °C) Ex Vivo Organ Perfusion: Lessons From the Literature. Transplantation 2021; 105:986-998. [PMID: 33031222 DOI: 10.1097/tp.0000000000003475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For 2 centuries, researchers have studied ex vivo perfusion intending to preserve the physiologic function of isolated organs. If it were indeed possible to maintain ex vivo organ viability for days, transplantation could become an elective operation with clinicians methodically surveilling and reconditioning allografts before surgery. To this day, experimental reports of successfully prolonged (≥24 hours) organ perfusion are rare and have not translated into clinical practice. To identify the crucial factors necessary for successful perfusion, this review summarizes the history of prolonged normothermic ex vivo organ perfusion. By examining successful techniques and protocols used, this review outlines the essential elements of successful perfusion, limitations of current perfusion systems, and areas where further research in preservation science is required.
Collapse
Affiliation(s)
- Lise N Tchouta
- Department of Surgery, Columbia University Medical Center, New York, NY
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Fares Alghanem
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Central Michigan University College of Medicine, Mount Pleasant, MI
| | | | | |
Collapse
|