1
|
Mao QL, Yu ZH, Nie L, Wang FX, Dong YH, Qi XF. Gastrointestinal injury in cardiopulmonary bypass: current insights and future directions. Front Pharmacol 2025; 16:1542995. [PMID: 40356958 PMCID: PMC12067416 DOI: 10.3389/fphar.2025.1542995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Cardiopulmonary bypass (CPB) is an essential component of cardiac surgery. As CPB technology continues to advance and innovate, it has enabled the expansion of surgical boundaries and the resolution of many previously inoperable challenges. However, the occurrence of various complications during CPB warrants attention, with their prevention and management being paramount. The gastrointestinal tract, directly connected to the external environment, is vulnerable not only to external factors but also to internal changes that may induce damage. Both preclinical and clinical research have demonstrated the incidence of gastrointestinal injuries following CPB, often accompanied by dysbiosis and abnormal metabolic outputs. Currently, interventions addressing gastrointestinal injuries following CPB remain insufficient. Although recent years have not seen notable progress in this field, emerging academic research underscores the essential role of the gut microbiome and its metabolic products in sustaining overall health and internal equilibrium. Notably, their significance as the body's "second genome" is increasingly recognized. Consequently, reevaluating the gastrointestinal damage post-CPB, alongside the associated dysbiosis and metabolic disturbances, is imperative. This reassessment carries substantial theoretical and practical implications for enhancing treatment strategies and bettering patient outcomes after CPB. This review aims to deliver a comprehensive synthesis of the latest preclinical and clinical research on CPB, address current challenges and gaps, and explore potential future research directions.
Collapse
Affiliation(s)
- Qi-Long Mao
- Department of Anesthesiology, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Liang Nie
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Hui Dong
- Department of Anesthesiology, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Xiao-Fei Qi
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Department of Anesthesiology, Women and Children’s Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Ludwig EK, Abraham N, Schaaf CR, McKinney CA, Freund J, Stewart AS, Veerasammy BA, Thomas M, Cardona DM, Garman K, Barbas AS, Sudan DL, Gonzalez LM. Comparison of the effects of normothermic machine perfusion and cold storage preservation on porcine intestinal allograft regenerative potential and viability. Am J Transplant 2024; 24:564-576. [PMID: 37918482 PMCID: PMC11082874 DOI: 10.1016/j.ajt.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
Intestinal transplantation (IT) is the final treatment option for intestinal failure. Static cold storage (CS) is the standard preservation method used for intestinal allografts. However, CS and subsequent transplantation induce ischemia-reperfusion injury (IRI). Severe IRI impairs epithelial barrier function, including loss of intestinal stem cells (ISC), critical to epithelial regeneration. Normothermic machine perfusion (NMP) preservation of kidney and liver allografts minimizes CS-associated IRI; however, it has not been used clinically for IT. We hypothesized that intestine NMP would induce less epithelial injury and better protect the intestine's regenerative ability when compared with CS. Full-length porcine jejunum and ileum were procured, stored at 4 °C, or perfused at 34 °C for 6 hours (T6), and transplanted. Histology was assessed following procurement (T0), T6, and 1 hour after reperfusion. Real-time quantitative reverse transcription polymerase chain reaction, immunofluorescence, and crypt culture measured ISC viability and proliferative potential. A greater number of NMP-preserved intestine recipients survived posttransplant, which correlated with significantly decreased tissue injury following 1-hour reperfusion in NMP compared with CS samples. Additionally, ISC gene expression, spheroid area, and cellular proliferation were significantly increased in NMP-T6 compared with CS-T6 intestine. NMP appears to reduce IRI and improve graft regeneration with improved ISC viability and proliferation.
Collapse
Affiliation(s)
- Elsa K Ludwig
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Nader Abraham
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cecilia R Schaaf
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline A McKinney
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - John Freund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Amy S Stewart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Brittany A Veerasammy
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Mallory Thomas
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Diana M Cardona
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine Garman
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew S Barbas
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Debra L Sudan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Liara M Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
3
|
Serradilla J, Andrés Moreno AM, Talayero P, Burgos P, Machuca M, Camps Ortega O, Vallejo MT, Rubio Bolívar FJ, Bueno A, Sánchez A, Zambrano C, De la Torre Ramos CA, Rodríguez O, Largo C, Serrano P, Prieto Bozano G, Ramos E, López Santamaría M, Stringa P, Hernández F. Preclinical Study of DCD and Normothermic Perfusion for Visceral Transplantation. Transpl Int 2023; 36:11518. [PMID: 37745640 PMCID: PMC10514355 DOI: 10.3389/ti.2023.11518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Considering recent clinical and experimental evidence, expectations for using DCD-derived intestines have increased considerably. However, more knowledge about DCD procedure and long-term results after intestinal transplantation (ITx) is needed. We aimed to describe in detail a DCD procedure for ITx using normothermic regional perfusion (NRP) in a preclinical model. Small bowel was obtained from pigs donors after 1 h of NRP and transplanted to the recipients. Graft Intestinal samples were obtained during the procedure and after transplantation. Ischemia-reperfusion injury (Park-Chiu score), graft rejection and transplanted intestines absorptive function were evaluated. Seven of 8 DCD procedures with NRP and ITx were successful (87.5%), with a good graft reperfusion and an excellent recovery of the recipient. The architecture of grafts was well conserved during NRP. After an initial damage of Park-chiu score of 4, all grafts recovered from ischemia-reperfusion, with no or very subtle alterations 2 days after ITx. Most recipients (71.5%) did not show signs of rejection. Only two cases demonstrated histologic signs of mild rejection 7 days after ITx. Interestingly intestinal grafts showed good absorptive capacity. The study's results support the viability of intestinal grafts from DCD using NRP, contributing more evidence for the use of DCD for ITx.
Collapse
Affiliation(s)
- Javier Serradilla
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Ane Miren Andrés Moreno
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Paloma Talayero
- Department of Immunology, University Hospital 12 de Octubre, Madrid, Spain
| | - Paula Burgos
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Department of Cardiovascular Surgery, La Paz University Hospital, Madrid, Spain
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Onys Camps Ortega
- Molecular Imaging and Immunohistochemistry Laboratory, Institute for Health Research IdiPaz, Madrid, Spain
| | - María Teresa Vallejo
- Molecular Imaging and Immunohistochemistry Laboratory, Institute for Health Research IdiPaz, Madrid, Spain
| | | | - Alba Bueno
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Alba Sánchez
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Cristina Zambrano
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Carlos Andrés De la Torre Ramos
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Olaia Rodríguez
- Department of Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Carlota Largo
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Department of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Pilar Serrano
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Gerardo Prieto Bozano
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Esther Ramos
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Manuel López Santamaría
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Pablo Stringa
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Institute for Immunological and Pathophysiological Studies (IIFP), National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| |
Collapse
|
4
|
Stringa P, Vecchio Dezillio LE, Talayero P, Serradilla J, Errea A, Machuca M, Papa-Gobbi R, Camps Ortega O, Pucci Molineris M, Lausada N, Andres Moreno AM, Rumbo M, Hernández Oliveros F. Experimental Assessment of Intestinal Damage in Controlled Donation After Circulatory Death for Visceral Transplantation. Transpl Int 2023; 36:10803. [PMID: 36713114 PMCID: PMC9878676 DOI: 10.3389/ti.2023.10803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
There is an urgent need to address the shortage of potential multivisceral grafts in order to reduce the average time in waiting list. Since donation after circulatory death (DCD) has been successfully employed for other solid organs, a thorough evaluation of the use of intestinal grafts from DCD is warranted. Here, we have generated a model of Maastricht III DCD in rodents, focusing on the viability of intestinal and multivisceral grafts at five (DCD5) and twenty (DCD20) minutes of cardiac arrest compared to living and brain death donors. DCD groups exhibited time-dependent damage. DCD20 generated substantial intestinal mucosal injury and decreased number of Goblet cells whereas grafts from DCD5 closely resemble those of brain death and living donors groups in terms intestinal morphology, expression of tight junction proteins and number of Paneth and Globet cells. Upon transplantation, intestines from DCD5 showed increased ischemia/reperfusion damage compared to living donor grafts, however mucosal integrity was recovered 48 h after transplantation. No differences in terms of graft rejection, gene expression and absorptive function between DCD5 and living donor were observed at 7 post-transplant days. Collectively, our results highlight DCD as a possible strategy to increase multivisceral donation and transplantation procedures.
Collapse
Affiliation(s)
- Pablo Stringa
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain,Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina,Organ Transplant Laboratory, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Leandro Emmanuel Vecchio Dezillio
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina,Organ Transplant Laboratory, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Javier Serradilla
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Agustina Errea
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Rodrigo Papa-Gobbi
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain,Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Onys Camps Ortega
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Melisa Pucci Molineris
- Biochemistry Research Institute of La Plata, School of Medicine, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Natalia Lausada
- Organ Transplant Laboratory, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Ane Miren Andres Moreno
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Martin Rumbo
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández Oliveros
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain,Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain,Executive Operational Committee, ERN TransplantChild, Madrid, Spain,*Correspondence: Francisco Hernández Oliveros,
| |
Collapse
|
5
|
Andres AM, Encinas JL, Sánchez-Galán A, Rodríguez JS, Estefania K, Sacristan RG, Alcolea A, Serrano P, Estébanez B, Leon IV, Burgos P, Rocafort AG, Ramchandani B, Calderón B, Verdú C, Jimenez E, Talayero P, Stringa P, Navarro IDLP, Ramos E, Oliveros FH. First case report of multivisceral transplant from a deceased cardiac death donor. Am J Transplant 2023; 23:577-581. [PMID: 36725427 DOI: 10.1016/j.ajt.2022.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
The current shortage of pediatric multivisceral donors accounts for the long time and mortality on the waiting list of pediatric patients. The use of donors after cardiac death, especially after the outbreak of normothermic regional perfusion, has increased in recent years for all solid organs except the intestine, mainly because of its higher susceptibility to ischemia-reperfusion injury. We present the first literature case of multivisceral donors after cardiac death transplantation in a 13-month-old recipient from a 2.5-month-old donor. Once exitus was certified, an extracorporeal membrane oxygenation circuit was established, cannulating the aorta and infrarenal vena cava, while the supra-aortic branches were clamped. The abdominal organs completely recovered from ischemia through normothermic regional perfusion (extracorporeal membrane oxygenation initially and beating heart later). After perfusion with the preservation solution, the multivisceral graft was uneventfully implanted. Two months later, the patient was discharged without any complications. This case demonstrates the possibility of reducing the time spent on the waiting list for these patients.
Collapse
Affiliation(s)
- Ane M Andres
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain; La Paz Research Institute (Idipaz), La Paz University Hospital, Madrid, Spain; European Reference Network on Transplantation in Children (TransplantChild ERN), Madrid, Spain; Anatomy, Histology and Neuroscience Department, University Autonoma of Madrid, Madrid, Spain.
| | - Jose Luis Encinas
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain
| | | | - Javier Serradilla Rodríguez
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain; La Paz Research Institute (Idipaz), La Paz University Hospital, Madrid, Spain
| | - Karla Estefania
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain
| | - Rocio Gonzalez Sacristan
- Pediatric Gastroenterology Department, Intestinal Rehabilitation Unit, La Paz University Hospital, Madrid, Spain
| | - Alida Alcolea
- Pediatric Gastroenterology Department, Intestinal Rehabilitation Unit, La Paz University Hospital, Madrid, Spain
| | - Pilar Serrano
- Pediatric Gastroenterology Department, Intestinal Rehabilitation Unit, La Paz University Hospital, Madrid, Spain
| | - Belén Estébanez
- Intensive Care Unit and Transplant Coordination Unit, La Paz University Hospital, Madrid, Spain
| | - Iñigo Velasco Leon
- Pediatric Perfusion Department, La Paz University Hospital, Madrid, Spain; Pediatric Cardiovascular Surgery Department, La Paz University Hospital, Madrid, Spain
| | - Paula Burgos
- Pediatric Perfusion Department, La Paz University Hospital, Madrid, Spain; Pediatric Cardiovascular Surgery Department, La Paz University Hospital, Madrid, Spain
| | | | - Bunty Ramchandani
- Pediatric Cardiovascular Surgery Department, La Paz University Hospital, Madrid, Spain
| | - Belén Calderón
- Pediatric Intensive Care Unit Department, La Paz University Hospital, Madrid, Spain
| | - Cristina Verdú
- Pediatric Intensive Care Unit Department, La Paz University Hospital, Madrid, Spain
| | - Esperanza Jimenez
- Pediatric Anesthesiology Department, La Paz University Hospital, Madrid, Spain
| | - Paloma Talayero
- Immunology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Pablo Stringa
- Institute for Immunological and Physiopathological Studies (IIFP-CONICET-UNLP), National University of La Plata, Buenos Aires, Argentina
| | | | - Esther Ramos
- Pediatric Gastroenterology Department, Intestinal Rehabilitation Unit, La Paz University Hospital, Madrid, Spain
| | - Francisco Hernandez Oliveros
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain; La Paz Research Institute (Idipaz), La Paz University Hospital, Madrid, Spain; European Reference Network on Transplantation in Children (TransplantChild ERN), Madrid, Spain
| |
Collapse
|
6
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Clarysse M, Dubois A, Vanuytsel T, Pirenne J, Ceulemans LJ. Potential options to expand the intestinal donor pool: a comprehensive review. Curr Opin Organ Transplant 2022; 27:106-111. [PMID: 35191400 DOI: 10.1097/mot.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Intestinal donation is currently restricted to 'perfect' donors, as the intestine is extremely vulnerable to ischemia. With generally deteriorating donor quality and increasing indications for intestinal transplantation (ITx), the potential to safely increase the donor pool should be evaluated. RECENT FINDINGS Increasing awareness on intestinal donation (often forgotten) and cautiously broadening the strict donor criteria (increasing age, resuscitation time and ICU stay) could expand the potential donor pool. Donors after circulatory death (DCD) have so far not been considered for ITx, due to the particularly detrimental effect of warm ischemia on the intestine. However, normothermic regional perfusion might be a well tolerated strategy to render the use of DCD intestinal grafts feasible. Furthermore, machine perfusion is under continuous development and might improve preservation of the intestine and potentially offer a platform to modulate the intestinal graft. Lastly, living donation currently represents only a minority of all ITxs performed worldwide. Various studies and registry analysis show that it can be performed safely for the donor and successfully in the recipient. SUMMARY Several potential strategies are available to expand the current intestinal donor pool. Most of them require further investigation or technical developments before they can be implemented in the clinical routine.
Collapse
Affiliation(s)
- Mathias Clarysse
- Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven & Department of Microbiology, Immunology and Transplantation, KU Leuven
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
| | - Antoine Dubois
- Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven & Department of Microbiology, Immunology and Transplantation, KU Leuven
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
- Department of Experimental Surgery and Transplantation (CHEX), University Hospital Saint-Luc, Brussels
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
- Department of Gastroenterology and Hepatology, University Hospitals Leuven & Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA)
| | - Jacques Pirenne
- Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven & Department of Microbiology, Immunology and Transplantation, KU Leuven
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
- Department of Thoracic Surgery, University Hospitals Leuven & Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|