1
|
Duarte S, Fassler AM, Willman M, Lewis D, Warren C, Angeli-Pahim I, Shah R, Vrakas G, El Hinnawi A, De Faria W, Beduschi T, Battula N, Zarrinpar A. Soluble DNA Concentration in the Perfusate is a Predictor of Posttransplant Renal Function in Hypothermic Machine Perfused Kidney Allografts. Transplant Direct 2025; 11:e1768. [PMID: 40124244 PMCID: PMC11927653 DOI: 10.1097/txd.0000000000001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 03/25/2025] Open
Abstract
Background Hypothermic machine perfusion (HMP) has greatly improved kidney allograft preservation. However, tissue damage still occurs during HMP, affecting posttransplant graft function. Therefore, better methods are needed to continuously assess organ quality and to predict posttransplant graft function and survival. We propose that soluble DNA (sDNA) concentration in HMP perfusate can be used as a noninvasive biomarker for this purpose. Methods Perfusate samples of kidney grafts placed on HMP were collected 5 min after the initiation of HMP and again at the conclusion of HMP. sDNA of nuclear origin from the perfusate was quantified by real-time polymerase chain reaction and correlated with HMP parameters and posttransplant clinical outcomes. Results Kidney grafts from 52 deceased donors placed on HMP were studied. Perfusate sDNA concentration was significantly higher in transplanted kidneys with delayed graft function. Higher concentrations of perfusate sDNA at 5 min and at HMP conclusion were also correlated with lower graft function in the initial posttransplant period, as measured by postoperative day 2, 3, and 4 creatinine reduction ratios. Standard pump parameters such as renal vascular resistance and renal vascular flow were poor indicators of early posttransplant graft function. Conclusions sDNA concentration in HMP perfusate of kidney grafts can indicate the quality of kidney graft preservation and predict posttransplant renal function. This biomarker should be explored further to improve renal organ assessment and transplantation outcomes.
Collapse
Affiliation(s)
- Sergio Duarte
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Anne-Marie Fassler
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Matthew Willman
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Duncan Lewis
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Curtis Warren
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Isabella Angeli-Pahim
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Rushi Shah
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Georgios Vrakas
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Ashraf El Hinnawi
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Werviston De Faria
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Thiago Beduschi
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Narendra Battula
- Division of Transplant Surgery, Department of Surgery, Oklahoma University College of Medicine, Oklahoma City, OK
| | - Ali Zarrinpar
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
2
|
Gagarinskiy EL, Sharapov MG, Goncharov RG, Gurin AE, Ugraitskaya SV, Fesenko EE. The effectiveness of prolonged hypothermic preservation of isolated rat hearts using oxygen, medical nitrous oxide and carbon monoxide gas mixtures. Arch Biochem Biophys 2025; 765:110295. [PMID: 39798642 DOI: 10.1016/j.abb.2025.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The possibility of using an oxygen-nitrous oxide mixture for prolonged hypothermic preservation of rat heart for 24 h was investigated. A comparative analysis of restoration of functional activity of hearts in the groups of 24-h preservation at +4 °C with different gases (O2, N2) and gas mixtures (CO + O2, N2O + O2, N2+O2, N2O + N2) was carried out. It was shown that the presence of oxygen in the gas mixture was the key factor for heart preservation. No stable heart preservation was observed in oxygen-free mixtures. At the same time, preservation in pure oxygen showed a significantly lower level of cardiac recovery compared to preservation in gas mixtures O2+CO (6.5 atm.) and O2+N2O (6.5 atm.). LVDP (left ventricular developed pressure) values were 30 ± 19 mmHg and 46 ± 9 mmHg, respectively, with no significant differences found. The decrease in LDVP after 24 h of storage was 26-40 % of the intact control. The results obtained indicate the presence of pronounced synergistic effects of both gases during 24-h heart preservation, which is confirmed by data of marker genes Nfe2l2, Nox1, Prdx1, Hif1a, Nos2, Slc2a4, Ucp-1, Jun, Casp3 expression analysis and myocardial infarction damage level data. The more frequent occurrence of arrhythmias was observed in the oxygen-nitrous oxide group compared with the CO group, and the mechanism of this phenomenon is unclear. Nevertheless, the already medically approved N2O + O2 gas mixture could serve as a balanced choice for future improvements, offering a shorter duration of cardiac preservation compared to the CO + O2 mixture, while ensuring safety in its use.
Collapse
Affiliation(s)
- Evgeniy L Gagarinskiy
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Mars G Sharapov
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Ruslan G Goncharov
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Artem E Gurin
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Svetlana V Ugraitskaya
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Eugeny E Fesenko
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| |
Collapse
|
3
|
Ohira S, Tavolacci SC, Okumura K, Isath A, Gregory V, de la Pena C, Kai M. Machine Perfusion for Recovery of Brain Death Donor Hearts From Extended Distances. ASAIO J 2025; 71:263-269. [PMID: 39700046 DOI: 10.1097/mat.0000000000002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
The emerging ex vivo machine perfusion (MP) enables the extension of ex situ intervals, potentially expanding the heart transplant (OHT) donor pool. From October 18, 2018, to June 30, 2023, isolated OHT using donation after brain death (DBD) from extended distances (>500 miles) were identified in the United Network for Organ Sharing database, and categorized into cold storage (non-MP, N = 1,212) and MP group (N = 152). The MP utilization rate for DBD hearts from extended distances surged from 0% in 2018 to 27.7% in 2023. Recipient characteristics including listing status were similar except for history of cardiac surgery (non-MP, 32% vs. MP, 41%, p = 0.019). The travel distance was longer in MP group (696 vs. 894 miles, p < 0.001), as was donor organ preservation time (4.42 vs. 6.27 hours, p < 0.001). One-year survival was similar between groups (non-MP, 93.0 ± 0.8% vs. MP, 90.5 ± 2.9%, p = 0.23). In multivariable Cox hazards models, MP was not associated with mortality (hazard ratio, 1.19; p = 0.60). Among MP cohort, survival was comparable between hearts transported between 500-999 miles (N = 112) and those over 1,000 miles (N = 40). The utilization of MP for DBD heart recovery allows for safe DBD recovery from extended distance with comparable survival to cold storage.
Collapse
Affiliation(s)
- Suguru Ohira
- From the Division of Cardiothoracic Surgery, Department of Surgery, Westchester Medical Center, Valhalla, New York
- New York Medical College Scholl of Medicine, Valhalla, New York
| | - Sooyun Caroline Tavolacci
- From the Division of Cardiothoracic Surgery, Department of Surgery, Westchester Medical Center, Valhalla, New York
- Graduate School of Biomedical Sciences, Ichan School of Medicine at Mount Sinai, New York, New York
| | - Kenji Okumura
- From the Division of Cardiothoracic Surgery, Department of Surgery, Westchester Medical Center, Valhalla, New York
| | - Ameesh Isath
- Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Corazon de la Pena
- From the Division of Cardiothoracic Surgery, Department of Surgery, Westchester Medical Center, Valhalla, New York
| | - Masashi Kai
- Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
4
|
Moll G, Beilhack A. Editorial: Methods in alloimmunity and transplantation: 2023. Front Immunol 2024; 15:1516554. [PMID: 39588366 PMCID: PMC11586340 DOI: 10.3389/fimmu.2024.1516554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT)
- Berlin-Brandenburg School for Regenerative Therapies (BSRT)
- Julius Wolff Institute (JWI) for Musculoskeletal Research
- Department of Nephrology and Internal Intensive Care Medicine, all three part of Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Beilhack
- Experimental Stem Cell Transplantation Group, Departments of Internal Medicine II and Department of Pediatrics, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| |
Collapse
|
5
|
Hosgood SA, Nicholson ML. Current Basic Research in Normothermic Machine Perfusion. Eur Surg Res 2024; 65:137-145. [PMID: 39471796 DOI: 10.1159/000542290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is gradually being introduced into clinical transplantation to improve the quality of organs and increase utilisation. This review details current understanding of the underlying mechanistic effects of NMP in the heart, lung, liver, and kidney. It also considers recent advancements to extend the perfusion interval in these organs and the use of NMP to introduce novel therapeutic interventions, with a focus on organ modulation. SUMMARY The re-establishment of circulation during NMP leads to the upregulation of inflammatory and immune mediators, similar to an ischaemia-reperfusion injury response. The level of injury is determined by the condition of the organ, but inflammation may also be exacerbated by the passenger leucocytes that emerge from the organ during perfusion. There is evidence that damaged organs can recover and that prolonged NMP may be advantageous. In the liver, successful 7-day NMP has been achieved. The delivery of therapeutic agents to an organ can aid repair and be used to modify the organ to reduce immunogenicity or change the structure of the blood group antigens to create a universal donor blood group organ. KEY MESSAGES The application of NMP in organ transplantation is a growing area of research and is increasingly being used in the clinic. In the future, NMP may offer the opportunity to change practice. If organs can be preserved for days on an NMP system, transplantation may become an elective rather than an emergency procedure. The ability to introduce therapies during NMP is an effective way to treat an organ and avoid the complexity of treating the recipient.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Roussakis E, Cascales JP, Yoeli D, Cralley A, Goss A, Wiatrowski A, Carvalho M, Moore HB, Moore EE, Huang CA, Evans CL. Versatile, in-line optical oxygen tension sensors for continuous monitoring during ex vivo kidney perfusion. SENSORS & DIAGNOSTICS 2024; 3:1014-1019. [PMID: 38882471 PMCID: PMC11170683 DOI: 10.1039/d3sd00240c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/19/2024] [Indexed: 06/18/2024]
Abstract
Integration of physiological sensing modalities within tissue and organ perfusion systems is becoming a steadily expanding field of research, aimed at achieving technological breakthrough innovations that will expand the sites and clinical settings at which such systems can be used. This is becoming possible in part due to the advancement of user-friendly optical sensors in recent years, which rely both on synthetic, luminescent sensor molecules and inexpensive, low-power electronic components for device engineering. In this article we report a novel approach towards enabling automated, continuous monitoring of oxygenation during ex vivo organ perfusion, by combining versatile flow cell components and low-power, programmable electronic readout devices. The sensing element comprises a 3D printed, miniature flow cell with tubing connectors and an affixed oxygen-sensing thin film material containing in-house developed, brightly-emitting metalloporphyrin phosphor molecules embedded within a polymer matrix. Proof-of-concept validation of this technology is demonstrated through integration within the tubing circuit of a transportable medical device for hypothermic oxygenated machine perfusion of extracted kidneys as a model for organs to be preserved as transplants.
Collapse
Affiliation(s)
- Emmanuel Roussakis
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Juan Pedro Cascales
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Dor Yoeli
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus Aurora Colorado USA
| | - Alexis Cralley
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus Aurora Colorado USA
| | - Avery Goss
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Anna Wiatrowski
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Maia Carvalho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Hunter B Moore
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus Aurora Colorado USA
| | - Ernest E Moore
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus Aurora Colorado USA
| | - Christene A Huang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus Aurora Colorado USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| |
Collapse
|
7
|
Ogurlu B, Hamelink TL, Lantinga VA, Leuvenink HGD, Pool MBF, Moers C. Furosemide attenuates tubulointerstitial injury and allows functional testing of porcine kidneys during normothermic machine perfusion. Artif Organs 2024; 48:595-605. [PMID: 38164041 DOI: 10.1111/aor.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is a promising pretransplant kidney quality assessment platform, but it remains crucial to increase its diagnostic potential while ensuring minimal additional injury to the already damaged kidney. Interventions that alter tubular transport can influence renal function and injury during perfusion. This study aimed to determine whether furosemide and desmopressin affect renal function and injury during NMP. METHODS Eighteen porcine kidneys (n = 6 per group) were subjected to 30 min of warm ischemia and 4 h of oxygenated hypothermic perfusion before being subjected to 6 h of NMP. Each organ was randomized to receive no drug, furosemide (750 mg), or desmopressin (16 μg) during NMP. RESULTS Compared with the other groups, the addition of furosemide resulted in significantly increased urine output, fractional excretion of sodium and potassium, and urea clearance during NMP. Urinary neutrophil gelatinase-associated lipocalin levels decreased significantly with furosemide supplementation compared with the other groups. The addition of desmopressin did not result in any significantly different outcome measurements compared with the control group. CONCLUSIONS This study showed that the addition of furosemide affected renal function while attenuating tubulointerstitial injury during NMP. Therefore, furosemide supplementation may provide renal protection and serve as a functional test for pretransplant kidney viability assessment during NMP.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kirschen MP, Lewis A, Rubin MA, Varelas PN, Greer DM. Beyond the Final Heartbeat: Neurological Perspectives on Normothermic Regional Perfusion for Organ Donation after Circulatory Death. Ann Neurol 2024; 95:1035-1039. [PMID: 38501716 DOI: 10.1002/ana.26926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Normothermic regional perfusion (NRP) has recently been used to augment organ donation after circulatory death (DCD) to improve the quantity and quality of transplantable organs. In DCD-NRP, after withdrawal of life-sustaining therapies and cardiopulmonary arrest, patients are cannulated onto extracorporeal membrane oxygenation to reestablish blood flow to targeted organs including the heart. During this process, aortic arch vessels are ligated to restrict cerebral blood flow. We review ethical challenges including whether the brain is sufficiently reperfused through collateral circulation to allow reemergence of consciousness or pain perception, whether resumption of cardiac activity nullifies the patient's prior death determination, and whether specific authorization for DCD-NRP is required. ANN NEUROL 2024;95:1035-1039.
Collapse
Affiliation(s)
- Matthew P Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariane Lewis
- Departments of Neurology and Neurosurgery, New York University, Langone Medical Center, New York, NY, USA
| | - Michael A Rubin
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - David M Greer
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
10
|
Sampaio NZ, Faleiro MD, Vieira LVDS, Lech GE, Viana SW, Tavares CPO, Mattiazzi AD, Burke GW. Simultaneous Heart and Kidney Transplantation: A Systematic Review and Proportional Meta-Analysis of Its Characteristics and Long-Term Variables. Transpl Int 2024; 37:12750. [PMID: 38881801 PMCID: PMC11176494 DOI: 10.3389/ti.2024.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
Patients with end-stage heart disease who undergo a heart transplant frequently have simultaneous kidney insufficiency, therefore simultaneous heart and kidney transplantation is an option and it is necessary to understand its characteristics and long-term variables. The recipient characteristics and operative and long-term variables were assessed in a meta-analysis. A total of 781 studies were screened, and 33 were thoroughly reviewed. 15 retrospective cohort studies and 376 patients were included. The recipient's mean age was 51.1 years (95% CI 48.52-53.67) and 84% (95% CI 80-87) were male. 71% (95% CI 59-83) of the recipients were dialysis dependent. The most common indication was ischemic cardiomyopathy [47% (95% CI 41-53)] and cardiorenal syndrome [22% (95% CI 9-35)]. Also, 33% (95% CI 20-46) of the patients presented with delayed graft function. During the mean follow-up period of 67.49 months (95% CI 45.64-89.33), simultaneous rejection episodes of both organ allografts were described in 5 cases only. Overall survival was 95% (95% CI 88-100) at 30 days, 81% (95% CI 76-86) at 1 year, 79% (95% CI 71-87) at 3, and 71% (95% CI 59-83) at 5 years. Simultaneous heart and kidney transplantation is an important option for concurrent cardiac and renal dysfunction and has acceptable rejection and survival rates.
Collapse
Affiliation(s)
| | | | | | - Gabriele Eckerdt Lech
- Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Adela D. Mattiazzi
- Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George W. Burke
- Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
11
|
Moll G, Lim WH, Penack O. Editorial: Emerging talents in alloimmunity and transplantation: 2022. Front Immunol 2024; 15:1393026. [PMID: 38558808 PMCID: PMC10978591 DOI: 10.3389/fimmu.2024.1393026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Guido Moll
- BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wai H. Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Olaf Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Nadig SN, Leventhal J, Gallon L, Atkinson C. Editorial: Precision therapeutics using next generation technologies in transplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1371701. [PMID: 38993759 PMCID: PMC11235258 DOI: 10.3389/frtra.2024.1371701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Satish N. Nadig
- Department of Surgery, Microbiology/Immunology, and Pediatrics, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph Leventhal
- Department of Surgery, Microbiology/Immunology, and Pediatrics, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| | - Lorenzo Gallon
- Division of Transplant, University of Illinois, Chicago, IL, United States
| | - Carl Atkinson
- Department of Surgery, Microbiology/Immunology, and Pediatrics, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
See Hoe LE, Li Bassi G, Wildi K, Passmore MR, Bouquet M, Sato K, Heinsar S, Ainola C, Bartnikowski N, Wilson ES, Hyslop K, Skeggs K, Obonyo NG, Shuker T, Bradbury L, Palmieri C, Engkilde-Pedersen S, McDonald C, Colombo SM, Wells MA, Reid JD, O'Neill H, Livingstone S, Abbate G, Haymet A, Jung JS, Sato N, James L, He T, White N, Redd MA, Millar JE, Malfertheiner MV, Molenaar P, Platts D, Chan J, Suen JY, McGiffin DC, Fraser JF. Donor heart ischemic time can be extended beyond 9 hours using hypothermic machine perfusion in sheep. J Heart Lung Transplant 2023; 42:1015-1029. [PMID: 37031869 DOI: 10.1016/j.healun.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The global shortage of donor hearts available for transplantation is a major problem for the treatment of end-stage heart failure. The ischemic time for donor hearts using traditional preservation by standard static cold storage (SCS) is limited to approximately 4 hours, beyond which the risk for primary graft dysfunction (PGD) significantly increases. Hypothermic machine perfusion (HMP) of donor hearts has been proposed to safely extend ischemic time without increasing the risk of PGD. METHODS Using our sheep model of 24 hours brain death (BD) followed by orthotopic heart transplantation (HTx), we examined post-transplant outcomes in recipients following donor heart preservation by HMP for 8 hours, compared to donor heart preservation for 2 hours by either SCS or HMP. RESULTS Following HTx, all HMP recipients (both 2 hours and 8 hours groups) survived to the end of the study (6 hours after transplantation and successful weaning from cardiopulmonary bypass), required less vasoactive support for hemodynamic stability, and exhibited superior metabolic, fluid status and inflammatory profiles compared to SCS recipients. Contractile function and cardiac damage (troponin I release and histological assessment) was comparable between groups. CONCLUSIONS Overall, compared to current clinical SCS, recipient outcomes following transplantation are not adversely impacted by extending HMP to 8 hours. These results have important implications for clinical transplantation where longer ischemic times may be required (e.g., complex surgical cases, transport across long distances). Additionally, HMP may allow safe preservation of "marginal" donor hearts that are more susceptible to myocardial injury and facilitate increased utilization of these hearts for transplantation.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia.
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Uniting Care Hospitals, Intensive Care Units St Andrew's War Memorial Hospital and The Wesley Hospital, Brisbane, Queensland, Australia; Wesley Medical Research, Brisbane, Queensland, Australia; Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Queensland, Australia
| | - Emily S Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Kris Skeggs
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Wellcome Trust Centre for Global Health Research, Imperial College London, London, United Kingdom; Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya
| | - Tristan Shuker
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Lucy Bradbury
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Chiara Palmieri
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | | | - Charles McDonald
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Department of Anesthesia and Perfusion, The Prince Charles Hospital, Queensland, Australia
| | - Sebastiano M Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Janice D Reid
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hollier O'Neill
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Haymet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jae-Seung Jung
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Lynnette James
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ting He
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nicole White
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Meredith A Redd
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan E Millar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Maximillian V Malfertheiner
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Peter Molenaar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Platts
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan Chan
- School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David C McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Duan L, Quan L, Zheng B, Li Z, Zhang G, Zhang M, Zhou H. Inflation using hydrogen improves donor lung quality by regulating mitochondrial function during cold ischemia phase. BMC Pulm Med 2023; 23:213. [PMID: 37330482 DOI: 10.1186/s12890-023-02504-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction results in poor organ quality, negatively affecting the outcomes of lung transplantation. Whether hydrogen benefits mitochondrial function in cold-preserved donors remain unclear. The present study assessed the effect of hydrogen on mitochondrial dysfunction in donor lung injury during cold ischemia phase (CIP) and explored the underlying regulatory mechanism. METHODS Left donor lungs were inflated using 40% oxygen + 60% nitrogen (O group), or 3% hydrogen + 40% oxygen + 57% nitrogen (H group). Donor lungs were deflated in the control group and were harvested immediately after perfusion in the sham group (n = 10). Inflammation, oxidative stress, apoptosis, histological changes, mitochondrial energy metabolism, and mitochondrial structure and function were assessed. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were also analyzed. RESULTS Compared with the sham group, inflammatory response, oxidative stress, histopathological changes, and mitochondrial damage were severe in the other three groups. However, these injury indexes were remarkably decreased in O and H groups, with increased Nrf2 and HO-1 levels, elevated mitochondrial biosynthesis, inhibition of anaerobic glycolysis and restored mitochondrial structure and function compared with the control group. Moreover, inflation using hydrogen contributed to stronger protection against mitochondrial dysfunction and higher levels of Nrf2 and HO-1 when comparing with O group. CONCLUSIONS Lung inflation using hydrogen during CIP may improve donor lung quality by mitigating mitochondrial structural anomalies, enhancing mitochondrial function, and alleviating oxidative stress, inflammation, and apoptosis, which may be achieved through activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Le Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pain Medicine, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China
| | - Lini Quan
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pain Medicine, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China
| | - Bin Zheng
- Department of Anesthesiology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhe Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangchao Zhang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengdi Zhang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China.
| | - Huacheng Zhou
- Department of Pain Medicine, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China.
| |
Collapse
|
15
|
Heran W, Xin L, Qi G, Xiongfei Z. Vascularized organ bioprinting: From strategy to paradigm. Cell Prolif 2023; 56:e13453. [PMID: 36929675 DOI: 10.1111/cpr.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past two decades, bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organ in vitro. However, transitioning bioprinting from simple tissue models to real biomedical applications is still a challenge due to the lack of interdisciplinary theoretical knowledge and perfect multitechnology integration. This review examines the goals of vasculature manufacturing and proposes the objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top-down reproduction (bioprinting) and bottom-up regeneration (cellular behaviour). We also provide an in-depth analysis of the views from the four aspects of design, ink, printing, and culture. Furthermore, we present the 'constructing-comprehension cycle' research paradigm in Strategic Priority Research Program and the 'math-model-based batch insights generator' research paradigm for the future, which have the potential to revolutionize the biomedical field.
Collapse
Affiliation(s)
- Wang Heran
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gu Qi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Xiongfei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| |
Collapse
|
16
|
MacMillan S, Hosgood SA, Nicholson ML. Enzymatic blood group conversion of human kidneys during ex vivo normothermic machine perfusion. Br J Surg 2023; 110:133-137. [PMID: 36038141 PMCID: PMC10364487 DOI: 10.1093/bjs/znac293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 01/18/2023]
Abstract
A major restriction to transplantation is the requirement for ABO blood group compatibility between donor and recipient. In this study, an α-galactosidase enzyme from Bacteroides fragilis was used successfully to remove type B blood group antigens enzymatically from human kidneys using ex vivo normothermic machine perfusion. This provides the first step for a strategy to overcome the ABO barrier in kidney transplantation.
Collapse
Affiliation(s)
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
17
|
Gonzalez JM, Villarreal C, Fasci A, Rocco DD, Salazar S, Khalil A, Wearden B, Oseghale J, Garcia M, Portillo DJ, Hood RL. Evaluating the Performance of a Nonelectronic, Versatile Oxygenating Perfusion System across Viscosities Representative of Clinical Perfusion Solutions Used for Organ Preservation. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010002. [PMID: 36671574 PMCID: PMC9854583 DOI: 10.3390/bioengineering10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Introduction: On the United States' Organ Transplantation Waitlist, approximately 17 people die each day waiting for an organ. The situation continues to deteriorate as the discrepancy between harvested organs and the number of patients in need is increasing. Static cold storage is the clinical standard method for preserving a harvested organ but is associated with several drawbacks. Machine perfusion of an organ has been shown to improve preservation quality as well as preservation time over static cold storage. While there are machine perfusion devices clinically available, they are costly and limited to specific organs and preservation solutions. This study presents a versatile oxygenating perfusion system (VOPS) that supplies oxygen and pulsatile perfusion. Materials and Methods: Experiments evaluated the system's performance with a human kidney mimicking hydraulic analog using multiple compressed oxygen supply pressures and aqueous solutions with viscosities ranging from 1 to 6.5 cP, which simulated viscosities of commonly used organ preservation solutions. Results and Conclusions: The VOPS produced mean flow rates ranging from 0.6 to 28.2 mL/min and perfusion pressures from 4.8 to 96.8 mmHg, which successfully achieved the desired perfusion parameters for human kidneys. This work provides evidence that the VOPS described herein has the versatility to perfuse organs using many of the clinically available preservation solutions.
Collapse
Affiliation(s)
- Jose M. Gonzalez
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Carorina Villarreal
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Anjelyka Fasci
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - David Di Rocco
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Sophia Salazar
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Anis Khalil
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Brandt Wearden
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Jessica Oseghale
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Mariana Garcia
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Daniel J. Portillo
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: (D.J.P.); (R.L.H.)
| | - R. Lyle Hood
- Department of Mechanical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: (D.J.P.); (R.L.H.)
| |
Collapse
|
18
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
19
|
Normothermic Ex Vivo Heart Perfusion with Mesenchymal Stem Cell-Derived Conditioned Medium Improves Myocardial Tissue Protection in Rat Donation after Circulatory Death Hearts. Stem Cells Int 2022; 2022:8513812. [DOI: 10.1155/2022/8513812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. Adopting hearts from donation after circulatory death (DCD) is a promising approach to enlarge the donor pool. Nevertheless, DCD hearts experience severe warm ischemia/reperfusion (I/R) injury. Recent studies have demonstrated that conditioned medium (CM) derived from bone marrow mesenchymal stem cells (BMSCs) has the potential of reducing organ I/R injury. Therefore, we investigated whether DCD heart preservation with normothermic ex vivo heart perfusion (EVHP) and BMSCs-CM treatment could alleviate myocardial warm I/R injury in the DCD hearts. Methods. We randomly divided donor rats into two groups: (1) DCD-Control group and (2) DCD-CM group. Before DCD heart preservation with the normothermic EVHP system for 105 minutes, rats suffered from a 25-minute warm ischemia injury in the DCD procedure. Vehicle or CM (300 μl) was added to the perfusate at the beginning of the perfusion process. The cardiac function of DCD hearts in the DCD-Control and DCD-CM groups was measured every 30 minutes. Besides, non-DCD hearts were harvested from the beating-heart rats. Results. The antibody array demonstrated that the CM contained 14 bioactive factors involved in apoptosis, inflammation, and oxidative stress. Warm ischemia injury resulted in a significant increase in the level of oxidative stress, inflammation, and apoptosis in the DCD hearts of DCD-Control group. Furthermore, compared with the DCD-Control group, CM treatment increased the developed pressure,
and
of the left ventricular in the DCD hearts during a 90-minute EVHP. Moreover, the administration of CM attenuated the level of oxidative stress, inflammation, and apoptosis in the DCD hearts of the DCD-CM group. Conclusions. Normothermic EVHP combined with CM treatment can alleviate warm I/R injury in the DCD hearts by decreasing the level of oxidative stress, inflammatory response, and apoptosis, which might alleviate the shortage of donor hearts by adopting DCD hearts.
Collapse
|
20
|
Clarysse M, Dubois A, Vanuytsel T, Pirenne J, Ceulemans LJ. Potential options to expand the intestinal donor pool: a comprehensive review. Curr Opin Organ Transplant 2022; 27:106-111. [PMID: 35191400 DOI: 10.1097/mot.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Intestinal donation is currently restricted to 'perfect' donors, as the intestine is extremely vulnerable to ischemia. With generally deteriorating donor quality and increasing indications for intestinal transplantation (ITx), the potential to safely increase the donor pool should be evaluated. RECENT FINDINGS Increasing awareness on intestinal donation (often forgotten) and cautiously broadening the strict donor criteria (increasing age, resuscitation time and ICU stay) could expand the potential donor pool. Donors after circulatory death (DCD) have so far not been considered for ITx, due to the particularly detrimental effect of warm ischemia on the intestine. However, normothermic regional perfusion might be a well tolerated strategy to render the use of DCD intestinal grafts feasible. Furthermore, machine perfusion is under continuous development and might improve preservation of the intestine and potentially offer a platform to modulate the intestinal graft. Lastly, living donation currently represents only a minority of all ITxs performed worldwide. Various studies and registry analysis show that it can be performed safely for the donor and successfully in the recipient. SUMMARY Several potential strategies are available to expand the current intestinal donor pool. Most of them require further investigation or technical developments before they can be implemented in the clinical routine.
Collapse
Affiliation(s)
- Mathias Clarysse
- Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven & Department of Microbiology, Immunology and Transplantation, KU Leuven
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
| | - Antoine Dubois
- Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven & Department of Microbiology, Immunology and Transplantation, KU Leuven
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
- Department of Experimental Surgery and Transplantation (CHEX), University Hospital Saint-Luc, Brussels
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
- Department of Gastroenterology and Hepatology, University Hospitals Leuven & Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA)
| | - Jacques Pirenne
- Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven & Department of Microbiology, Immunology and Transplantation, KU Leuven
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven
- Department of Thoracic Surgery, University Hospitals Leuven & Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Liver Transplantation After Organ Donation Due to Hydrogen Sulfide Intoxication: Report of the First Case. Transplantation 2022; 106:e247-e248. [PMID: 35333851 DOI: 10.1097/tp.0000000000004018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Weber MP, Stulak J, Maltais S, Pagani FD, Cowger J, Tchantchaleishvili V. Quality of Life Metrics in LVAD Patients after Hemocompatibility-Related Adverse Events. Artif Organs 2022; 46:1616-1625. [PMID: 35315092 DOI: 10.1111/aor.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hemocompatibility-related adverse events (HRAE) negatively influence survival. However, no study has examined the impact of these events on health-related quality of life (HRQOL) and functional outcomes following continuous flow left ventricular assist device implantation (CF-LVAD). We assessed the impact of HRAE events on HRQOL and hypothesized that HRAE's adversely impact HRQOL and functional outcomes. METHODS INTERMACS database identified patients undergoing primary CF-LVAD implantation from 2008 to 2017. HRAEs included stroke, non-surgical bleeding, hemolysis, and pump thrombosis and were identified as defined in the literature. HRAEs were further stratified as Tier 1-2 and disabling stroke events. Time-series analysis was executed for HRAE patients with values pre-HRAE, post-HRAE, and closest to 12 month follow up. Local polynomial regression curves modeling individual patients were superimposed into "spaghetti" plots. RESULTS All HRQOL and functional metrics improved in patients over time, despite HRAE complication. However, these patient metrics were significantly reduced compared to the non-HRAE cohort (Table 2). Advanced data visualization techniques noted decline after experiencing an HRAE with a subsequent recovery to baseline levels or higher (Figure1-4). 6MWT was noted to be most affected in the post-HRAE period but recovered similar to other metrics (Table 3). CONCLUSIONS The burden of HRAE following CF-LVAD implantation did not negatively impact quality of life. However, 6-minute walk test did not increase in the post-HRAE period in all HRAE patients. Improvement of heart failure symptoms after CF-LVAD coupled with optimal management following HRAE act to preserve enhanced quality of life.
Collapse
Affiliation(s)
- Matthew P Weber
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - John Stulak
- Department of Surgery, Division of Cardiovascular Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
| | - Simon Maltais
- Division of Cardiac Surgery, Centre Hospitalié de l'Université de Montréal, Montréal, QC, Canada
| | - Francis D Pagani
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor
| | - Jennifer Cowger
- Department of Medicine, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA
| | | |
Collapse
|
23
|
Veloso-Giménez V, Escamilla R, Necuñir D, Corrales-Orovio R, Riveros S, Marino C, Ehrenfeld C, Guzmán CD, Boric MP, Rebolledo R, Egaña JT. Development of a Novel Perfusable Solution for ex vivo Preservation: Towards Photosynthetic Oxygenation for Organ Transplantation. Front Bioeng Biotechnol 2022; 9:796157. [PMID: 34976984 PMCID: PMC8714958 DOI: 10.3389/fbioe.2021.796157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for ex vivo organ preservation. Here, the microalgae Chlamydomonas reinhardtii was incorporated in a standard preservation solution, and key aspects such as alterations in cell size, oxygen production and survival were studied. Osmolarity and rheological features of the photosynthetic solution were comparable to human blood. In terms of functionality, the photosynthetic solution proved to be not harmful and to provide sufficient oxygen to support the metabolic requirement of zebrafish larvae and rat kidney slices. Thereafter, isolated porcine kidneys were perfused, and microalgae reached all renal vasculature, without inducing damage. After perfusion and flushing, no signs of tissue damage were detected, and recovered microalgae survived the process. Altogether, this work proposes the use of photosynthetic microorganisms as vascular oxygen factories to generate and deliver oxygen in isolated organs, representing a novel and promising strategy for organ preservation.
Collapse
Affiliation(s)
- Valentina Veloso-Giménez
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosalba Escamilla
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Necuñir
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rocío Corrales-Orovio
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Division of Hand, Plastic and Aesthetic Surgery, LMU Munich, University Hospital, Munich, Germany
| | - Sergio Riveros
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlo Marino
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Ehrenfeld
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Mauricio P Boric
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Hepatobiliary and Pancreatic Surgery Unit, Surgery Service, Hospital Dr. Sótero del Río, Santiago, Chile
| | - José Tomás Egaña
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Storti G, Favi E, Albanesi F, Kim BS, Cervelli V. Adipose-Derived Stem/Stromal Cells in Kidney Transplantation: Status Quo and Future Perspectives. Int J Mol Sci 2021; 22:11188. [PMID: 34681848 PMCID: PMC8538841 DOI: 10.3390/ijms222011188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Francesca Albanesi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| |
Collapse
|