1
|
Almes M, Gardin A, Davit-Spraul A, Bouligand J, Habes D, Jacquemin E. JAG1 and THBS2 Mutations in a Child Presenting With Incomplete Alagille Syndrome. JPGN REPORTS 2023; 4:e338. [PMID: 37600608 PMCID: PMC10435021 DOI: 10.1097/pg9.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/09/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Marion Almes
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Antoine Gardin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Anne Davit-Spraul
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
- Biochemistry Unit
| | - Jérôme Bouligand
- Molecular Genetics and Pharmacogenetics, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dalila Habes
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| |
Collapse
|
2
|
Semenova N, Kamenets E, Annenkova E, Marakhonov A, Gusarova E, Demina N, Guseva D, Anisimova I, Degtyareva A, Taran N, Strokova T, Zakharova E. Clinical Characterization of Alagille Syndrome in Patients with Cholestatic Liver Disease. Int J Mol Sci 2023; 24:11758. [PMID: 37511516 PMCID: PMC10380973 DOI: 10.3390/ijms241411758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Alagille syndrome (ALGS) is a multisystem condition characterized by cholestasis and bile duct paucity on liver biopsy and variable involvement of the heart, skeleton, eyes, kidneys, and face and caused by pathogenic variants in the JAG1 or NOTCH2 gene. The variable expressivity of the clinical phenotype and the lack of genotype-phenotype correlations lead to significant diagnostic difficulties. Here we present an analysis of 18 patients with cholestasis who were diagnosed with ALGS. We used an NGS panel targeting coding exons of 52 genes, including the JAG1 and NOTCH2 genes. Sanger sequencing was used to verify the mutation in the affected individuals and family members. The specific facial phenotype was seen in 16/18 (88.9%). Heart defects were seen in 8/18 (44.4%) patients (pulmonary stenosis in 7/8). Butterfly vertebrae were seen in 5/14 (35.7%) patients. Renal involvement was detected in 2/18 (11.1%) cases-one patient had renal cysts, and one had obstructive hydronephrosis. An ophthalmology examination was performed on 12 children, and only one had posterior embryotoxon (8.3%). A percutaneous liver biopsy was performed in nine cases. Bile duct paucity was detected in six/nine cases (66.7%). Two patients required liver transplantation because of cirrhosis. We identified nine novel variants in the JAG1 gene-eight frameshift variants (c.1619_1622dupGCTA (p.Tyr541X), c.1160delG (p.Gly387fs), c.964dupT (p.C322fs), c.120delG (p.L40fs), c.1984dupG (p.Ala662Glyfs), c.3168_3169delAG (p.R1056Sfs*51), c.2688delG (p.896CysfsTer49), c.164dupG (p.Cys55fs)) and one missense variant, c.2806T > G (p.Cys936Gly). None of the patients presented with NOTCH2 variants. In accordance with the classical criteria, only six patients could meet the diagnostic criteria in our cohort without genetic analysis. Genetic testing is important in the diagnosis of ALGS and can help differentiate it from other types of cholestasis.
Collapse
Affiliation(s)
| | - Elena Kamenets
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | | | | | - Elena Gusarova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Nina Demina
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Daria Guseva
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Inga Anisimova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Anna Degtyareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov, Ministry of Health of the Russian Federation, 115522 Moscow, Russia
- Department of Neonatology, First Moscow State Medical University named after I.M. Sechenov, 115522 Moscow, Russia
| | - Natalia Taran
- Federal Research Centre of Nutrition and Biotechnology, 115522 Moscow, Russia
| | - Tatiana Strokova
- Federal Research Centre of Nutrition and Biotechnology, 115522 Moscow, Russia
| | | |
Collapse
|
3
|
Li ZD, Abuduxikuer K, Wang L, Hao CZ, Zhang J, Wang MX, Li LT, Qiu YL, Xie XB, Lu Y, Wang JS. Defining pathogenicity of NOTCH2 variants for diagnosis of Alagille syndrome type 2 using a large cohort of patients. Liver Int 2022; 42:1836-1848. [PMID: 35567760 DOI: 10.1111/liv.15292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Alagille syndrome (ALGS) type 2 caused by mutations in NOTCH2 has genotypic and phenotypic heterogeneity. Diagnosis in some atypical patients with isolated hepatic presentation could be missed. METHODS Using 2087 patients with paediatric liver manifestations, NOTCH2 allele frequencies, in-silico prediction, protein domains and clinical features were analysed to define the pathogenicity of NOTCH2 variants for diagnosis of ALGS type 2. RESULTS Among 2087 patients with paediatric liver manifestations, significantly more NOTCH2 variants were absent in gnomAD in patients with elevated γ-glutamyltransferase (GGT) (p = .041). Significantly more NOTCH2 variants which were absent in gnomAD were located in protein functional domains (p = .038). When missense variants were absent in gnomAD and predicted to be pathogenic by at least three out of seven in-silico tools, they were found to be significantly associated with liver manifestations with elevated GGT (p = .003). Comparing this to patients with likely benign (LB) variants, the patients with likely-pathogenic (LP) variants have significantly more liver manifestations with elevated GGT (p = .0001). Significantly more patients with LP variants had extra-hepatic phenotypes of ALGS compared with those patients with LB variants (p = .0004). CONCLUSION When NOTCH2 variants are absent in gnomAD, null variants and missense variants which were predicted to be pathogenic by at least three in-silico tools could be considered pathogenic in patients with high GGT chronic liver diseases.
Collapse
Affiliation(s)
- Zhong-Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Li Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Chen-Zhi Hao
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Meng-Xuan Wang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Li-Ting Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
4
|
Sergi CM, Gilmour S. Biliary Atresia: A Complex Hepatobiliary Disease with Variable Gene Involvement, Diagnostic Procedures, and Prognosis. Diagnostics (Basel) 2022; 12:330. [PMID: 35204421 PMCID: PMC8870870 DOI: 10.3390/diagnostics12020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The diagnosis of biliary atresia is still terrifying at the 3rd decade of the 21st century. In a department of neonatal intensive care unit, parents and physicians face a challenge with a jaundiced baby, who may or may not have a surgically correctable hepatopathy. The approach has been systematically evaluated, but the etiology remains ambiguous. The study of families with recurrent biliary atresia has been undertaken at a molecular level. The primary interest with this disease is to identify the etiology and change the treatment from symptomatic to curative. The occurrence of this obstructive cholangio-hepatopathy in well-known genetic syndromes has suggested just coincidental finding, but the reality can be more intriguing because some of these diseases may have some interaction with the development of the intrahepatic biliary system. Several genes have been investigated thoroughly, including ADD3 and GPC1 shifting the interest from viruses to genetics. In this review, the intriguing complexities of this hepatobiliary disease are highlighted.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Stollery Children’s Hospital, Laboratory Medicine and Pathology, University Alberta Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Division of Anatomic Pathology, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Susan Gilmour
- Department of Pediatric Gastroenterology and Nutrition, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
5
|
Nakajima H, Tsuma Y, Fukuhara S, Kodo K. A case of infantile Alagille syndrome with severe dyslipidemia: a new insight into lipid metabolism and therapeutics. J Endocr Soc 2022; 6:bvac005. [PMID: 35155971 PMCID: PMC8826833 DOI: 10.1210/jendso/bvac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Alagille syndrome (AGS) is an autosomal dominant genetic disorder characterized by congenital heart disease, hepatic cholestasis, dyslipidemia, and characteristic facies since infancy. Cholestatic hypercholesterolemia in patients diagnosed with AGS is occasionally refractory and resistant to conventional treatments. We report the case of a 4-month-old boy diagnosed with AGS and refractory dyslipidemia due to cholestatic liver disease. He had repeated episodes of cyanosis due to pulmonary artery atresia since birth and underwent a Blalock-Taussig shunt procedure at age 3 months. At age 4 months, cholestatic hyperbilirubinemia deteriorated to a serum total bilirubin level of 19.9 mg/dL. At age 12 months, a laboratory test revealed severe dyslipidemia (serum total cholesterol, 1796 mg/dL; serum triglycerides [TGs], 635 mg/dL), and the presence of xanthomas. A pathogenic variant of the JAG1 gene (c.1326G > A, p.Trp442X) was detected through genetic testing. Oral ursodeoxycholate normalized hyperbilirubinemia with a subtle improvement in dyslipidemia. Combination therapy with pravastatin and fenofibrate did not successfully improve dyslipidemia. At age 20 months, altering pravastatin to atorvastatin was effective in normalizing serum cholesterol and TGs with no adverse events. Combination therapy with atorvastatin and fenofibrate was successful in improving refractory dyslipidemia in a child with AGS. Atorvastatin is a well-known strong statin that can lower serum cholesterol, and fenofibrate can lower serum TG levels. We propose that atorvastatin be taken into consideration for the treatment of persistent hyperlipidemia in patients diagnosed with AGS, because atorvastatin upregulates bile acid synthesis and lipoprotein scavenging, and inhibits intrinsic cholesterol production.
Collapse
Affiliation(s)
- Hisakazu Nakajima
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pediatrics, Midorigaoaka Hospital, Takatsuki, Osaka, Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Fukuhara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
The morphological and histopathological assessment of Alagille syndrome with extrahepatic bile duct obstruction: the importance of the differential diagnosis with subgroup "o" biliary atresia. Pediatr Surg Int 2021; 37:1167-1174. [PMID: 34076772 DOI: 10.1007/s00383-021-04932-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 01/20/2023]
Abstract
PURPOSE The differential diagnosis between Alagille syndrome (AGS) with extrahepatic bile duct obstruction (EHBDO) and biliary atresia (BA) is difficult. We report a case series of AGS with EHBDO with detailed validation of the morphological and histopathological features for the differential diagnosis of BA. METHODS Six liver transplantations (LTs) were performed for AGS with EHBDO. All patients were diagnosed with BA at the referring institution and the diagnosis of AGS was then confirmed based on a genetic analysis before LT. We verified the morphological and histopathological findings of the porta hepatis and liver at the diagnosis of BA and at LT. RESULTS All patients had acholic stool in the neonatal period and were diagnosed with BA by cholangiography. The gross liver findings included a smooth and soft surface, without any cirrhosis. The gross findings of the porta hepatis included aplasia of the proximal hepatic duct, or subgroup "o", in five patients. The histopathological examination of the EHBD also revealed obstruction/absence of the hepatic duct. There were no patients with aplasia of the common bile duct. CONCLUSIONS Aplasia of the hepatic duct and the macroscopic liver findings may help in to differentiate between AGS with EHBDO and BA.
Collapse
|
7
|
Two Novel Mutations in the JAG1 Gene in Pediatric Patients with Alagille Syndrome: The First Case Series in Czech Republic. Diagnostics (Basel) 2021; 11:diagnostics11060983. [PMID: 34071626 PMCID: PMC8230072 DOI: 10.3390/diagnostics11060983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Alagille syndrome (ALGS) is a highly variable multisystem disorder inherited in an autosomal dominant pattern with incomplete penetration. The disorder is caused by mutations in the JAG1 gene, only rarely in the NOTCH2 gene, which gives rise to malformations in multiple organs. Bile duct paucity is the main characteristic feature of the disease. Methods: Molecular-genetic examination of genes JAG1 and NOTCH2 in four probands of Czech origin who complied with the diagnostic criteria of ALGS was performed using targeted next-generation sequencing of genes JAG1 and NOTCH2. Segregation of variants in a family was assessed by Sanger sequencing of parental DNA. Results: Mutations in the JAG1 gene were confirmed in all four probands. We identified two novel mutations: c.3189dupG and c.1913delG. Only in one case, the identified JAG1 mutation was de novo. None of the parents carrying JAG1 pathogenic mutation was diagnosed with ALGS. Conclusion: Diagnosis of the ALGS is complicated due to the absence of clear genotype-phenotype correlations and the extreme phenotypic variability in the patients even within the same family. This fact is of particular importance in connection to genetic counselling and prenatal genetic testing.
Collapse
|
8
|
Gilbert MA, Bauer RC, Rajagopalan R, Grochowski CM, Chao G, McEldrew D, Nassur JA, Rand EB, Krock BL, Kamath BM, Krantz ID, Piccoli DA, Loomes KM, Spinner NB. Alagille syndrome mutation update: Comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification. Hum Mutat 2019; 40:2197-2220. [PMID: 31343788 PMCID: PMC6899717 DOI: 10.1002/humu.23879] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.
Collapse
Affiliation(s)
- Melissa A. Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Robert C. Bauer
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Christopher M. Grochowski
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Grace Chao
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Deborah McEldrew
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - James A. Nassur
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Elizabeth B. Rand
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Bryan L. Krock
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Department of PediatricsHospital for Sick Children and the University of TorontoTorontoCanada
| | - Ian D. Krantz
- Division of Human Genetics, Roberts Individualized Medical Genetics CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - David A. Piccoli
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Kathleen M. Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
9
|
Sangkhathat S, Laochareonsuk W, Maneechay W, Kayasut K, Chiengkriwate P. Variants Associated with Infantile Cholestatic Syndromes Detected in Extrahepatic Biliary Atresia by Whole Exome Studies: A 20-Case Series from Thailand. J Pediatr Genet 2018; 7:67-73. [PMID: 29707407 DOI: 10.1055/s-0038-1632395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
Biliary atresia (BA) is the most severe form of obstructive cholangiopathy occurring in infants. Definitive diagnosis of BA usually relies on operative findings together with supporting pathological patterns found in the extrahepatic bile duct. In infancy, overlapping clinical patterns of cholestasis can be found in other diseases including biliary hypoplasia and progressive familial intrahepatic cholestasis. In addition, BA has been reported as a phenotype in some rare genetic syndromes. Unlike BA, other cholangiopathic phenotypes have their own established genetic markers. In this study, we used these markers to look for other cholestasis entities in cases diagnosed with BA. DNA from 20 cases of BA, diagnosed by operative findings and histopathology, were subjected to a study of 19 genes associated with infantile cholestasis syndromes, using whole exome sequencing. Variant selection focused on those with allele frequencies in dbSNP150 of less than 0.01. All selected variants were verified by polymerase chain reaction-direct sequencing. Of the 20 cases studied, 13 rare variants were detected in 9 genes: 4 in JAG1 (Alagille syndrome), 2 in MYO5B (progressive familial intrahepatic cholestasis [PFIC] type 6), and one each in ABCC2 (Dubin-Johnson syndrome), ABCB11 (PFIC type 2), UG1A1 (Crigler-Najjar syndrome), MLL2 (Kabuki syndrome), RFX6 (Mitchell-Riley syndrome), ERCC4 (Fanconi anemia), and KCNH1 (Zimmermann-Laband syndrome). Genetic lesions associated with various cholestatic syndromes detected in cases diagnosed with BA raised the hypothesis that severe inflammatory cholangiopathy in BA may not be a distinct disease entity, but a shared pathology among several infantile cholestatic syndromes.
Collapse
Affiliation(s)
- Surasak Sangkhathat
- Pediatric Surgery Unit, Department of Surgery, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wison Laochareonsuk
- Pediatric Surgery Unit, Department of Surgery, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wanwisa Maneechay
- Central Research Laboratory, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanita Kayasut
- Anatomical Pathology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Piyawan Chiengkriwate
- Pediatric Surgery Unit, Department of Surgery, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|