1
|
Tetzlaff EJ, Ioannou LG, O'Connor FK, Kaltsatou A, Ly V, Kenny GP. Practical Considerations for Using Personal Cooling Garments for Heat Stress Management in Physically Demanding Occupations: A Systematic Review and Meta-Analysis Using Realist Evaluation. Am J Ind Med 2025; 68:3-25. [PMID: 39498663 DOI: 10.1002/ajim.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Due to rising temperature extremes, workplaces are seeking new solutions, such as using personal cooling garments (PCG) to mitigate and manage workplace heat exposure. This systematic review sought to assess the physiological and perceptual effects of PCGs on workers in standard work clothing performing moderate-to-heavy intensity tasks in hot environments. METHODS A peer-reviewed search strategy was conducted in MEDLINE, Embase, CINAHL, Scopus, Global Health, and Business Source Complete with no language or time limits. A meta-analysis using a realist evaluation framework was then performed to evaluate the effectiveness of the PCGs. RESULTS Thirty-three studies with 764 participants (98% male; average 21 ± 34 participants per study), conducted primarily in a laboratory setting (76%) were included. The studies were 193 ± 190 min in duration and consisted of a moderate-to-heavy work effort of 3.3 ± 1.0 METs in hot ambient conditions (temperature: 35.9 ± 3.3°C, 51.4 ± 12.1% relative humidity, wet bulb globe temperature [WBGT] 31.2 ± 2.6°C). The PCGs (n = 67) facilitated heat exchange through conduction (n = 39), evaporation (n = 4), convection (n = 2), radiation (n = 2), or hybrid combinations (n = 20). Conductive and hybrid PCGs offered the greatest thermoregulatory benefit, whereby core temperature (Tc) and heart rate (HR) reductions were consistently observed (Conductive: Tc: -0.3°C, HR: -12 bpm; Hybrid: Tc:-0.2°C, HR: -10 bpm), while PCGs directed at enhancing evaporative and radiative heat exchange had no or minimal effect on the physiological outcomes assessed (i.e., TC < 0.1°C, HR: < 0.7 bpm). CONCLUSION While the PCGs had a positive overall effect, conductive options offered the most consistent benefit to workers. WBGT, clothing insulation, and duration of wear significantly affected some physiological and perceptual outcomes.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Leonidas G Ioannou
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
| | - Antonia Kaltsatou
- Functional Architecture of Mammals in their Environment Laboratory, School of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Valentina Ly
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Lee BJ, Flood TR, Russell SL, McCormick JJ, Fujii N, Kenny GP. Impacts of age, type 2 diabetes, and hypertension on circulating neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 after prolonged work in the heat in men. Eur J Appl Physiol 2024; 124:2923-2939. [PMID: 38753017 DOI: 10.1007/s00421-024-05505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/05/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Prolonged work in the heat increases the risk of acute kidney injury (AKI) in young men. Whether aging and age-associated chronic disease may exacerbate the risk of AKI remains unclear. METHODS We evaluated plasma neutrophil gelatinase-associated lipocalin (NGAL) and serum kidney injury molecule-1 (KIM1) before and after 180 min of moderate-intensity work (200 W/m2) in temperate (wet-bulb globe temperature [WBGT] 16 °C) and hot (32 °C) environments in healthy young (n = 13, 22 years) and older men (n = 12, 59 years), and older men with type 2 diabetes (T2D; n = 9, 60 years) or hypertension (HTN; n = 9, 60 years). RESULTS There were no changes in NGAL or KIM1 concentrations following prolonged work in temperate conditions in any group. Despite a similar work tolerance, the relative change in NGAL was greater in the older group when compared to the young group following exercise in the hot condition (mean difference + 82 ng/mL; p < 0.001). Baseline concentrations of KIM1 were ~ 22 pg/mL higher in the older relative to young group, increasing by ~ 10 pg/mL in each group after exercise in the heat (both p ≤ 0.03). Despite a reduced work tolerance in the heat in older men with T2D (120 ± 40 min) and HTN (108 ± 42 min), elevations in NGAL and KIM1 were similar to their healthy counterparts. CONCLUSION Age may be associated with greater renal stress following prolonged work in the heat. The similar biomarker responses in T2D and HTN compared to healthy older men, alongside reduced exercise tolerance in the heat, suggest these individuals may exhibit greater vulnerability to heat-induced AKI if work is prolonged.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, UK
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Sophie L Russell
- Clinical Sciences and Translational Medicine Theme, Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Kenny GP, Tetzlaff EJ, Journeay WS, Henderson SB, O’Connor FK. Indoor overheating: A review of vulnerabilities, causes, and strategies to prevent adverse human health outcomes during extreme heat events. Temperature (Austin) 2024; 11:203-246. [PMID: 39193048 PMCID: PMC11346563 DOI: 10.1080/23328940.2024.2361223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 08/29/2024] Open
Abstract
The likelihood of exposure to overheated indoor environments is increasing as climate change is exacerbating the frequency and severity of hot weather and extreme heat events (EHE). Consequently, vulnerable populations will face serious health risks from indoor overheating. While the relationship between EHE and human health has been assessed in relation to outdoor temperature, indoor temperature patterns can vary markedly from those measured outside. This is because the built environment and building characteristics can act as an important modifier of indoor temperatures. In this narrative review, we examine the physiological and behavioral determinants that influence a person's susceptibility to indoor overheating. Further, we explore how the built environment, neighborhood-level factors, and building characteristics can impact exposure to excess heat and we overview how strategies to mitigate building overheating can help reduce heat-related mortality in heat-vulnerable occupants. Finally, we discuss the effectiveness of commonly recommended personal cooling strategies that aim to mitigate dangerous increases in physiological strain during exposure to high indoor temperatures during hot weather or an EHE. As global temperatures continue to rise, the need for a research agenda specifically directed at reducing the likelihood and impact of indoor overheating on human health is paramount. This includes conducting EHE simulation studies to support the development of consensus-based heat mitigation solutions and public health messaging that provides equitable protection to heat-vulnerable people exposed to high indoor temperatures.
Collapse
Affiliation(s)
- Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily J. Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - W. Shane Journeay
- Departments of Medicine and Community Health and Epidemiology, Dalhousie Medicine New Brunswick and Dalhousie University, Saint John, NB, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
- Department of Rehabilitative Care, Providence Healthcare-Unity Health Toronto, Toronto, ON, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
- National Collaborating Centre for Environmental Health, Vancouver, BC, Canada
| | - Fergus K. O’Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Meade RD, Notley SR, Kirby NV, Kenny GP. A critical review of the effectiveness of electric fans as a personal cooling intervention in hot weather and heatwaves. Lancet Planet Health 2024; 8:e256-e269. [PMID: 38580427 DOI: 10.1016/s2542-5196(24)00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Health agencies worldwide have historically cautioned that electric fans accelerate body-heat gain during hot weather and heatwaves (typically in air temperatures ≥35°C). However, guidance published since 2021 has suggested that fans can still cool the body in air temperatures up to 40°C by facilitating sweat evaporation, and therefore are an inexpensive yet sustainable alternative to air conditioning. In a critical analysis of the reports cited to support this claim, we found that although fan use improves sweat evaporation, these benefits are of insufficient magnitude to exert meaningful reductions in body core temperature in air temperatures exceeding 35°C. Health agencies should continue to advise against fan use in air temperatures higher than 35°C, especially for people with compromised sweating capacity (eg, adults aged 65 years or older). Improving access to ambient cooling strategies (eg, air conditioning or evaporative coolers) and minimising their economic and environmental costs through policy initiatives, efficient cooling technology, and combined use of low-cost personal interventions (eg, skin wetting or fan use) are crucial for climate adaptation.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Bach AJE, Cunningham SJK, Morris NR, Xu Z, Rutherford S, Binnewies S, Meade RD. Experimental research in environmentally induced hyperthermic older persons: A systematic quantitative literature review mapping the available evidence. Temperature (Austin) 2024; 11:4-26. [PMID: 38567267 PMCID: PMC7615797 DOI: 10.1080/23328940.2023.2242062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 04/04/2024] Open
Abstract
The heat-related health burden is expected to persist and worsen in the coming years due to an aging global population and climate change. Defining the breadth and depth of our understanding of age-related changes in thermoregulation can identify underlying causes and strategies to protect vulnerable individuals from heat. We conducted the first systematic quantitative literature review to provide context to the historical experimental research of healthy older adults - compared to younger adults or unhealthy age matched cases - during exogenous heat strain, focusing on factors that influence thermoregulatory function (e.g. co-morbidities). We identified 4,455 articles, with 147 meeting eligibility criteria. Most studies were conducted in the US (39%), Canada (29%), or Japan (12%), with 71% of the 3,411 participants being male. About 71% of the studies compared younger and older adults, while 34% compared two groups of older adults with and without factors influencing thermoregulation. Key factors included age combined with another factor (23%), underlying biological mechanisms (18%), age independently (15%), influencing health conditions (15%), adaptation potential (12%), environmental conditions (9%), and therapeutic/pharmacological interventions (7%). Our results suggest that controlled experimental research should focus on the age-related changes in thermoregulation in the very old, females, those with overlooked chronic heat-sensitive health conditions (e.g. pulmonary, renal, mental disorders), the impact of multimorbidity, prolonged and cumulative effects of extreme heat, evidence-based policy of control measures (e.g. personal cooling strategies), pharmaceutical interactions, and interventions stimulating protective physiological adaptation. These controlled studies will inform the directions and use of limited resources in ecologically valid fieldwork studies.
Collapse
Affiliation(s)
- Aaron J. E. Bach
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sarah J. K. Cunningham
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Norman R. Morris
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Metro North Hospital and Health Service, The Prince Charles Hospital. Allied Health Research Collaborative, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sebastian Binnewies
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
6
|
Meade RD, Notley SR, Akerman AP, McGarr GW, Richards BJ, McCourt ER, King KE, McCormick JJ, Boulay P, Sigal RJ, Kenny GP. Physiological responses to 9 hours of heat exposure in young and older adults. Part I: Body temperature and hemodynamic regulation. J Appl Physiol (1985) 2023; 135:673-687. [PMID: 37439239 DOI: 10.1152/japplphysiol.00227.2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
Aging is associated with an elevated risk of heat-related mortality and morbidity, attributed, in part, to declines in thermoregulation. However, comparisons between young and older adults have been limited to brief exposures (1-4 h), which may not adequately reflect the duration or severity of the heat stress experienced during heat waves. We therefore evaluated physiological responses in 20 young (19-31 yr; 10 females) and 39 older (61-78 yr; 11 females) adults during 9 h of rest at 40°C and 9% relative humidity. Whole body heat exchange and storage were measured with direct calorimetry during the first 3 h and final 3 h. Core temperature (rectal) was monitored continuously. The older adults stored 88 kJ [95% confidence interval (CI): 29, 147] more heat over the first 3 h of exposure (P = 0.006). Although no between-group differences were observed after 3 h [young: 37.6°C (SD 0.2°C) vs. older: 37.7°C (0.3°C); P = 0.216], core temperature was elevated by 0.3°C [0.1, 0.4] (adjusted for baseline) in the older group at hour 6 [37.6°C (0.2°C) vs. 37.9°C (0.2°C); P < 0.001] and by 0.2°C [0.0, 0.3] at hour 9 [37.7°C (0.3°C) vs. 37.8°C (0.3°C)], although the latter comparison was not significant after multiplicity correction (P = 0.061). Our findings indicate that older adults sustain greater increases in heat storage and core temperature during daylong exposure to hot dry conditions compared with their younger counterparts. This study represents an important step in the use of ecologically relevant, prolonged exposures for translational research aimed at quantifying the physiological and health impacts of hot weather and heat waves on heat-vulnerable populations.NEW & NOTEWORTHY We found greater increases in body heat storage and core temperature in older adults than in their younger counterparts during 9 h of resting exposure to hot dry conditions. Furthermore, the age-related increase in core temperature was exacerbated in older adults with common heat-vulnerability-linked health conditions (type 2 diabetes and hypertension). Impairments in thermoregulatory function likely contribute to the increased risk of heat-related illness and injury seen in older adults during hot weather and heat waves.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brodie J Richards
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Kirby NV, Meade RD, Poirier MP, Sigal RJ, Boulay P, Kenny GP. Association between haemoglobin A 1c and whole-body heat loss during exercise-heat stress in physically active men with type 2 diabetes. Exp Physiol 2023; 108:338-343. [PMID: 36724895 PMCID: PMC10103889 DOI: 10.1113/ep090915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/30/2022] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is the impairment in heat dissipation during exercise observed in men with type 2 diabetes related to glycaemic control (indexed by glycated haemoglobin; haemoglobin A1c )? What is the main finding and its importance? No association was found between haemoglobin A1c (range: 5.1-9.1%) and whole-body heat loss in men with type 2 diabetes during exercise in the heat. However, individuals with elevated haemoglobin A1c exhibited higher body core temperature and heart rate responses. Thus, while haemoglobin A1c is not associated with heat loss per se, it may still have important implications for physiological strain during exercise. ABSTRACT Type 2 diabetes is associated with a reduced capacity to dissipate heat. It is unknown whether this impairment is related to glycaemic control (indexed by glycated haemoglobin; haemoglobin A1c ) is unknown. We evaluated the association between haemoglobin A1c and whole-body heat loss (via direct calorimetry), body core temperature, and heart rate in 26 physically active men with type 2 diabetes (43-73 years; HbA1c 5.1-9.1%) during exercise at increasing rates of metabolic heat production (∼150, 200, 250 W m-2 ) in the heat (40°C, ∼17% relative humidity). Haemoglobin A1c was not associated with whole-body heat loss (P = 0.617), nor the increase in core temperature from pre-exercise (P = 0.347). However, absolute core temperature and heart rate were elevated ∼0.2°C (P = 0.014) and ∼6 beats min-1 (P = 0.049), respectively, with every percentage point increase in haemoglobin A1c . Thus, while haemoglobin A1c does not appear to modify diabetes-related reductions in capacity for heat dissipation, it may still have important implications for physiological strain during exercise-heat stress.
Collapse
Affiliation(s)
- Nathalie V. Kirby
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of OttawaOttawaOntarioCanada
| | - Robert D. Meade
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Harvard T.H. Chan School of Public HealthHarvard UniversityBostonMAUSA
| | - Martin P. Poirier
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Human Performance Research and DevelopmentCanadian Forces Morale and Welfare ServicesOttawaOntarioCanada
| | - Ronald J. Sigal
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Departments of MedicineCardiac Sciences, and Community Health SciencesCumming School of MedicineFaculties of Medicine and KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Pierre Boulay
- Faculty of Physical Activity SciencesUniversity of SherbrookeSherbrookeQuebecCanada
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
| |
Collapse
|
8
|
McCormick JJ, King KE, Rutherford MM, Meade RD, Notley SR, Akerman AP, Dokladny K, Kenny GP. Effect of extracellular hyperosmolality during normothermia and hyperthermia on the autophagic response in peripheral blood mononuclear cells from young men. J Appl Physiol (1985) 2022; 132:995-1004. [PMID: 35238651 DOI: 10.1152/japplphysiol.00661.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat-stress induced dehydration is associated with extracellular hyperosmolality. To counteract the associated stress, cells employ cytoprotective mechanisms, including autophagy, however, the autophagic response to hyperosmotic stress has yet to be evaluated in humans. Thus, we investigated autophagy and associated cellular stress pathways (the heat shock response [HSR], apoptosis, and the acute inflammatory response) to isosmotic and hyperosmotic conditions with and without hyperthermia in twelve young men (mean [SD]; 25 [5] years). Participants received a 90-min intravenous infusion of either isosmotic (ISO; 0.9% NaCl; serum osmolality of 293 [4] mOsm/kg) or hyperosmotic (HYP; 3.0% NaCl; 300 [6] mOsm/kg) saline, followed by passive whole-body heating using a water perfused suit to increase esophageal temperature by ~0.8⁰C. Peripheral blood mononuclear cells were harvested at baseline (pre-infusion), post-infusion, and after heating, and changes in protein content were analyzed via Western blotting. Post-infusion, the LC3-II/I ratio was higher in HYP compared to ISO infusion (p<0.001), although no other protein changes were observed (all p>0.050). Following passive heating, autophagy increased in HYP, as demonstrated by an increase in LC3-II from baseline (p=0.004) and an elevated LC3-II/I ratio compared to ISO (p=0.035), and a decrease in p62 when compared to the ISO condition (p=0.019). This was accompanied by an elevation in cleaved caspase-3 following heating in the HYP condition (p<0.010), however, the HSR and acute inflammatory response did not change under any condition (all p>0.050). Taken together, our findings indicate that serum hyperosmolality induces autophagy and apoptotic signaling during mild hyperthermia with minimal autophagic activation during normothermia.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Carbohydrate hastens hypervolemia achieved through ingestion of aqueous sodium solution in resting euhydrated humans. Eur J Appl Physiol 2021; 121:3527-3537. [PMID: 34537876 DOI: 10.1007/s00421-021-04788-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ingesting beverages containing a high concentration of sodium under euhydrated conditions induces hypervolemia. Because carbohydrate can enhance interstitial fluid absorption via the sodium-glucose cotransporter and insulin-dependent renal sodium reabsorption, adding carbohydrate to high-sodium beverages may augment the hypervolemic response. METHODS To test this hypothesis, we had nine healthy young males ingest 1087 ± 82 mL (16-17 mL per kg body weight) of water or aqueous solution containing 0.7% NaCl, 0.7% NaCl + 6% dextrin, 0.9% NaCl, or 0.9% NaCl + 6% dextrin under euhydrated conditions. Each drink was divided into six equal volumes and ingested at 10-min intervals. During each trial, participants remained resting for 150 min. Measurements were made at baseline and every 30 min thereafter. RESULTS Plasma osmolality decreased with water ingestion (P ≤ 0.023), which increased urine volume such that there was no elevation in plasma volume from baseline (P ≥ 0.059). The reduction in plasma osmolality did not occur with ingestion of solution containing 0.7% or 0.9% NaCl (P ≥ 0.051). Consequently, urine volume was 176-288 mL smaller than after water ingestion and resulted in plasma volume expansion at 60 min and later times (P ≤ 0.042). In addition, net fluid balance was 211-329 mL greater than after water ingestion (P ≤ 0.028). Adding 6% dextrin to 0.7% or 0.9% NaCl solution resulted in plasma volume expansion within as little as 30 min (P ≤ 0.026), though the magnitudes of the increases in plasma volume were unaffected (P ≥ 0.148). CONCLUSION Dextrin mediates an earlier hypervolemic response associated with ingestion of high-sodium solution in resting euhydrated young men. (247/250 words).
Collapse
|
10
|
Notley SR, Akerman AP, Meade RD, McGarr GW, Kenny GP. Exercise Thermoregulation in Prepubertal Children: A Brief Methodological Review. Med Sci Sports Exerc 2021; 52:2412-2422. [PMID: 32366798 PMCID: PMC7556246 DOI: 10.1249/mss.0000000000002391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prepubertal children (6-12 yr) differ from adults in various morphological and physiological factors that may influence thermoregulatory function; however, experimental evidence of meaningful child-adult differences in heat strain during exercise-heat stress is sparse, despite numerous studies. Although we appreciate the challenges associated with performing such comparisons, part of that discrepancy may be due to the methods used. Nonetheless, a focused discussion of these methodological considerations and their implications for current understanding remains unavailable. This is an important knowledge gap given the threat to health posed by rising global temperatures and the ongoing focus on improving physical activity levels in children. The aims of this methodological review were, therefore, to (i) review the theoretical basis for child-adult differences in thermoregulatory function, (ii) describe previous comparisons of exercise thermoregulation between prepubertal children and adults, (iii) discuss two methodological issues associated with that research, which, in our view, make it difficult to present empirical evidence related to child-adult differences in thermoregulatory function and associated heat strain, (iv) provide potential solutions to these issues, and (v) propose pertinent areas for further research.
Collapse
Affiliation(s)
- Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, CANADA
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, CANADA
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, CANADA
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, CANADA
| | | |
Collapse
|
11
|
Meade RD, Akerman AP, Notley SR, McGinn R, Poirier P, Gosselin P, Kenny GP. Physiological factors characterizing heat-vulnerable older adults: A narrative review. ENVIRONMENT INTERNATIONAL 2020; 144:105909. [PMID: 32919284 DOI: 10.1016/j.envint.2020.105909] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 05/26/2023]
Abstract
More frequent and intense periods of extreme heat (heatwaves) represent the most direct challenge to human health posed by climate change. Older adults are particularly vulnerable, especially those with common age-associated chronic health conditions (e.g., cardiovascular disease, hypertension, obesity, type 2 diabetes, chronic kidney disease). In parallel, the global population is aging and age-associated disease rates are on the rise. Impairments in the physiological responses tasked with maintaining homeostasis during heat exposure have long been thought to contribute to increased risk of health disorders in older adults during heatwaves. As such, a comprehensive overview of the provisional links between age-related physiological dysfunction and elevated risk of heat-related injury in older adults would be of great value to healthcare officials and policy makers concerned with protecting heat-vulnerable sectors of the population from the adverse health impacts of heatwaves. In this narrative review, we therefore summarize our current understanding of the physiological mechanisms by which aging impairs the regulation of body temperature, hemodynamic stability and hydration status. We then examine how these impairments may contribute to acute pathophysiological events common during heatwaves (e.g., heatstroke, major adverse cardiovascular events, acute kidney injury) and discuss how age-associated chronic health conditions may exacerbate those impairments. Finally, we briefly consider the importance of physiological research in the development of climate-health programs aimed at protecting heat-vulnerable individuals.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Gosselin
- Institut National de Santé Publique du Québec and Université Laval, Québec, Québec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Meade RD, Notley SR, Rutherford MM, Boulay P, Kenny GP. Ageing attenuates the effect of extracellular hyperosmolality on whole-body heat exchange during exercise-heat stress. J Physiol 2020; 598:5133-5148. [PMID: 32996159 DOI: 10.1113/jp280132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS In humans, hypohydration attenuates sweat secretion and attenuates whole-body heat loss, probably to mitigate further fluid losses and thereby support blood pressure regulation. Recently, however, we demonstrated that the hypohydration-mediated reduction in net whole-body heat exchange (evaporative heat loss - dry heat gain) was blunted in middle-aged compared to younger men during moderate exercise in dry heat; albeit, the underpinning mechanisms could not be determined. Here we evaluated the hypothesis that those findings stemmed from a diminished influence of extracellular hyperosmolality on net whole-body heat exchange in middle-aged-to-older compared to young men. Consistent with that hypothesis, extracellular hyperosmolality induced by an intravenous infusion of hypertonic saline (3% NaCl) reduced net heat exchange and augmented rectal temperature to a greater extent in the young compared to middle-aged-to-older men. Thus, age-related differences in the influence of hypohydration on thermoregulatory function appear to be due to blunted sensitivity to hyperosmolality with ageing. ABSTRACT We recently demonstrated that sweating-induced hypohydration attenuated whole-body heat dissipation to a greater extent in young compared to middle-aged men during exercise-heat stress. Here, we evaluated whether this divergent response stemmed from an attenuated influence of extracellular hyperosmolality on heat exchange with ageing. To achieve this, ten young (mean (SD): 25 (5) years) and ten middle-aged-to-older (61 (5) years) men completed two trials involving a 90-min intravenous infusion of isosmotic saline (0.9% NaCl; ISO) or hyperosmotic saline (3.0% NaCl; HYP) followed by 60 min of cycling at a fixed metabolic heat production of 250 W/m2 (∼50% peak aerobic power) in dry heat (40°C, ∼17% relative humidity). Whole-body net heat exchange (evaporative heat loss - dry heat gain) was measured via direct calorimetry. Rectal temperature was monitored continuously. Heat exchange was attenuated in HYP compared to ISO in the young (233 (20) vs. 251 (17) W/m2 ; P = 0.002) but not older group (229 (16) vs. 227 (20) W/m2 ; P = 0.621). Further, heat exchange was lower in the middle-aged-to-older vs. young men in ISO (P = 0.034) but not in HYP (P = 0.623). Similarly, end-exercise rectal temperature was greater in HYP relative to ISO in the young (38.3 (0.4)°C vs. 37.9 (0.3)°C; P = 0.015) but not the middle-aged-to-older men (38.3 (0.3)°C vs. 38.2 (0.2)°C; P = 0.652). Compared to the young, rectal temperature was greater in the middle-aged-to-older during ISO (P = 0.035) whereas no between-group difference was observed in HYP (P = 0.746). Our findings indicate that ageing blunts the effect of extracellular hyperosmolality on thermoregulatory function during exercise-heat stress.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Hydration Status and Cardiovascular Function. Nutrients 2019; 11:nu11081866. [PMID: 31405195 PMCID: PMC6723555 DOI: 10.3390/nu11081866] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Hypohydration, defined as a state of low body water, increases thirst sensations, arginine vasopressin release, and elicits renin–angiotensin–aldosterone system activation to replenish intra- and extra-cellular fluid stores. Hypohydration impairs mental and physical performance, but new evidence suggests hypohydration may also have deleterious effects on cardiovascular health. This is alarming because cardiovascular disease is the leading cause of death in the United States. Observational studies have linked habitual low water intake with increased future risk for adverse cardiovascular events. While it is currently unclear how chronic reductions in water intake may predispose individuals to greater future risk for adverse cardiovascular events, there is evidence that acute hypohydration impairs vascular function and blood pressure (BP) regulation. Specifically, acute hypohydration may reduce endothelial function, increase sympathetic nervous system activity, and worsen orthostatic tolerance. Therefore, the purpose of this review is to present the currently available evidence linking acute hypohydration with altered vascular function and BP regulation.
Collapse
|
14
|
Meade RD, Notley SR, Kenny GP. Aging and human heat dissipation during exercise-heat stress: an update and future directions. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|