1
|
Wei KY, van Heugten MH, van Megen WH, van Veghel R, Rehaume LM, Cross JL, Viel JJ, van Willigenburg H, Silva PHI, Danser AHJ, de Baaij JHF, Hoorn EJ. Calcineurin inhibitor effects on kidney electrolyte handling and blood pressure: tacrolimus versus voclosporin. Nephrol Dial Transplant 2024; 40:151-163. [PMID: 38777623 PMCID: PMC11659976 DOI: 10.1093/ndt/gfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Calcineurin inhibitors (CNIs) affect kidney electrolyte handling and blood pressure (BP) through an effect on the distal tubule. The second-generation CNI voclosporin causes hypomagnesaemia and hypercalciuria less often than tacrolimus. This suggests different effects on the distal tubule, but this has not yet been investigated experimentally. METHODS Rats were treated with voclosporin, tacrolimus or vehicle for 28 days. Dosing was based on a pilot experiment to achieve clinically therapeutic concentrations. Drug effects were assessed by electrolyte handling at day 18 and 28, thiazide testing at day 20, telemetric BP recordings and analysis of messenger RNA (mRNA) and protein levels of distal tubular transporters at day 28. RESULTS Compared with vehicle, tacrolimus but not voclosporin significantly increased the fractional excretions of calcium (>4-fold), magnesium and chloride (both 1.5-fold) and caused hypomagnesaemia. Tacrolimus but not voclosporin significantly reduced distal tubular transporters at the mRNA and/or protein level, including the sodium-chloride cotransporter, transient receptor melastatin 6, transient receptor potential vanilloid 5, cyclin M2, sodium-calcium exchanger and calbindin-D28K. Tacrolimus but not voclosporin reduced the mRNA level and urinary excretion of epidermal growth factor. The saluretic response to hydrochlorothiazide at day 20 was similar in the voclosporin and vehicle groups, whereas it was lower in the tacrolimus group. The phosphorylated form of the sodium-chloride cotransporter was significantly higher at day 28 in rats treated with voclosporin than in those treated with tacrolimus. Tacrolimus transiently increased BP, whereas voclosporin caused a gradual but persistent increase in BP that was further characterized by high renin, normal aldosterone and low endothelin-1. CONCLUSIONS In contrast to tacrolimus, voclosporin does not cause hypercalciuria and hypomagnesaemia, but similarly causes hypertension. Our data reveal differences between the distal tubular effects of tacrolimus and voclosporin and provide a pathophysiological basis for the clinically observed differences between the two CNIs.
Collapse
Affiliation(s)
- Kuang-Yu Wei
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Martijn H van Heugten
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wouter H van Megen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard van Veghel
- Department of Internal Medicine, Division of Vascular Medicine, Pharmacology, and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - John J Viel
- Aurinia Pharmaceuticals Inc., Edmonton, Alberta, Canada
| | - Hester van Willigenburg
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pedro Henrique Imenez Silva
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine, Pharmacology, and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Berber M, Penton D. Calcineurin inhibitors and the renin-angiotensin-aldosterone system. Acta Physiol (Oxf) 2024; 240:e14248. [PMID: 39460458 DOI: 10.1111/apha.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Calcineurin inhibitors (CnIs) are effective immunosuppressants with decades of accumulated experience in treating immune disorders and, most notably, solid organ transplantation. While CnIs have significantly increased graft survival and transformed the patient standard of care, their use has been overshadowed by a number of undesired side effects. For instance, CnI-associated nephrotoxicity has been reported since early studies and remains a major therapeutic concern. The occurrence of several ion imbalances alongside hypertension was also noted early on, indicating the involvement of the renin-angiotensin-aldosterone system (RAAS) in CnI-mediated toxicity. However, the literature in this field is crowded with conflicting reports from clinical trials as well as studies using animal and invitro models. With this review, we aim to provide a structured and updated overview of the physiological and pathophysiological evidence supporting the involvement of the classical RAAS in CnI-associated toxicity.
Collapse
Affiliation(s)
- Mesut Berber
- Department of Pediatrics, Harvard Medical School and Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David Penton
- Electrophysiology Facility, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Demirci H, Popovic S, Dittmayer C, Yilmaz DE, El-Shimy IA, Mülleder M, Hinze C, Su M, Mertins P, Kirchner M, Osmanodja B, Paliege A, Budde K, Amann K, Persson PB, Mutig K, Bachmann S. Immunosuppression with cyclosporine versus tacrolimus shows distinctive nephrotoxicity profiles within renal compartments. Acta Physiol (Oxf) 2024; 240:e14190. [PMID: 38884453 DOI: 10.1111/apha.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
AIM Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac). We aimed to study whether chronic CsA and Tac exposures, before reaching irreversible nephrotoxic damage, affect renal compartments differentially and whether related pathogenic mechanisms can be identified. METHODS CsA and Tac were administered chronically in wild type Wistar rats using osmotic minipumps over 4 weeks. Functional parameters were controlled. Electron microscopy, confocal, and 3D-structured illumination microscopy were used for histopathology. Clinical translatability was tested in human renal biopsies. Standard biochemical, RNA-seq, and proteomic technologies were applied to identify implicated molecular pathways. RESULTS Both drugs caused significant albeit differential damage in vasculature and nephron. The glomerular filtration barrier was more affected by Tac than by CsA, showing prominent deteriorations in endothelium and podocytes along with impaired VEGF/VEGFR2 signaling and podocyte-specific gene expression. By contrast, proximal tubule epithelia were more severely affected by CsA than by Tac, revealing lysosomal dysfunction, enhanced apoptosis, impaired proteostasis and oxidative stress. Lesion characteristics were confirmed in human renal biopsies. CONCLUSION We conclude that pathogenetic alterations in the renal compartments are specific for either treatment. Considering translation to the clinical setting, CNI choice should reflect individual risk factors for renal vasculature and tubular epithelia. As a step in this direction, we share protein signatures identified from multiomics with potential pathognomonic relevance.
Collapse
Affiliation(s)
- Hasan Demirci
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Suncica Popovic
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Duygu Elif Yilmaz
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ismail Amr El-Shimy
- Molecular Epidemiology Unit, Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility-High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Mingzhen Su
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bilgin Osmanodja
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Paliege
- Department of Nephrology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Pontus B Persson
- Department of Translational Physiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Translational Physiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Cell- and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kalaycı R, Bingül İ, Soluk-Tekkeşin M, Olgaç V, Bekpınar S, Uysal M. The effect of glycine on oxidative stress, inflammation and renin-angiotensin system in kidneys and aorta of cyclosporine-administered rats. Drug Chem Toxicol 2024; 47:473-482. [PMID: 37338155 DOI: 10.1080/01480545.2023.2219036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug, used in organ transplantations. Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in CsA-toxicity. Glycine (Gly) has antioxidant and anti-inflammatory effects. In this study, Gly was investigated for its protective role against CsA-induced toxicity. CsA (20 mg/kg/day; subcutaneously) was administered to rats along with Gly injection (250 or 1000 mg/kg; intraperitoneally) for 21 days. Renal function markers [serum urea and creatinine and urinary protein and kidney injury molecule levels and creatinine clearance values] together with histopathological examinations were performed. Oxidative stress (reactive oxygen species, thiobarbutiric acid reactive substances, advanced oxidation products of protein, glutathione, ferric reducing anti-oxidant power and 4-hydroxynonenal levels), and inflammation (myeloperoxidase activity) were determined in kidney tissue. The RAS system [angiotensin II (Ang II) levels, and mRNA expressions of angiotensin converting enzyme (ACE), angiotensin II type-I receptor (AT1R)] and NADPH-oxidase 4 (NOX4) were measured in kidney and aorta. CsA caused significant disturbances in renal function markers, increases in oxidative stress and inflammation parameters and renal damage. Serum angiotensin II levels and mRNA expressions of ACE, AT1R and NOX4 elevated in the aorta and kidney of CsA-rats. Gly, especially its high-dose, alleviated renal function markers, oxidative stress, inflammation and renal damage in CsA-rats. Moreover, serum Ang II levels and mRNA expressions of ACE, AT1R and NOX4 decreased significantly in aorta and kidney in CsA-rats due to Gly treatment. Our results indicate that Gly may be useful for the prevention of CsA-induced renal and vascular toxicity.
Collapse
Affiliation(s)
- Rivaze Kalaycı
- Department of Laboratory Animals Science, Aziz Sancar Institude of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - İlknur Bingül
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merva Soluk-Tekkeşin
- Department of Pathology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Vakur Olgaç
- Department of Pathology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seldağ Bekpınar
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
5
|
Capolongo G, Damiano S, Suzumoto Y, Zacchia M, Rizzo M, Zona E, Pollastro RM, Simeoni M, Ciarcia R, Trepiccione F, Capasso G. Cyclosporin-induced hypertension is associated with the up-regulation of Na+-K+-2Cl- cotransporter (NKCC2). Nephrol Dial Transplant 2024; 39:297-304. [PMID: 37463050 PMCID: PMC10828191 DOI: 10.1093/ndt/gfad161] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The use of cyclosporin A (CsA) is hampered by the development of nephrotoxicity including hypertension, which is partially dependent on renal sodium retention. To address this issue, we have investigated in vivo sodium reabsorption in different nephron segments of CsA-treated rats through micropuncture study coupled to expression analyses of sodium transporters. To translate the findings in rats to human, kidney-transplanted patients having CsA treatment were enrolled in the study. METHODS Adult male Sprague-Dawley rats were treated with CsA (15 mg/kg/day) for 21 days, followed by micropuncture study and expression analyses of sodium transporters. CsA-treated kidney-transplanted patients with resistant hypertension were challenged with 50 mg furosemide. RESULTS CsA-treated rats developed hypertension associated with reduced glomerular filtration rate. In vivo microperfusion study demonstrated a significant decrease in rate of absolute fluid reabsorption in the proximal tubule but enhanced sodium reabsorption in the thick ascending limb of Henle's loop (TAL). Expression analyses of sodium transporters at the same nephron segments further revealed a reduction in Na+-H+ exchanger isoform 3 (NHE3) in the renal cortex, while TAL-specific, furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and NHE3 were significantly upregulated in the inner stripe of outer medulla. CsA-treated patients had a larger excretion of urinary NKCC2 protein at basal condition, and higher diuretic response to furosemide, showing increased FeNa+, FeCl- and FeCa2+ compared with both healthy controls and FK506-treated transplanted patients. CONCLUSION Altogether, these findings suggest that up-regulation of NKCC2 along the TAL facilitates sodium retention and contributes to the development of CsA-induced hypertension.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples, Naples, Italy
| | - Yoko Suzumoto
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Rizzo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Enrica Zona
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosa Maria Pollastro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples, Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
6
|
Wang X, Jiang S, Fei L, Dong F, Xie L, Qiu X, Lei Y, Guo J, Zhong M, Ren X, Yang Y, Zhao L, Zhang G, Wang H, Tang C, Yu L, Liu R, Patzak A, Persson PB, Hultström M, Wei Q, Lai EY, Zheng Z. Tacrolimus Causes Hypertension by Increasing Vascular Contractility via RhoA (Ras Homolog Family Member A)/ROCK (Rho-Associated Protein Kinase) Pathway in Mice. Hypertension 2022; 79:2228-2238. [PMID: 35938417 PMCID: PMC9993086 DOI: 10.1161/hypertensionaha.122.19189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND To provide tacrolimus is first-line treatment after liver and kidney transplantation. However, hypertension and nephrotoxicity are common tacrolimus side effects that limit its use. Although tacrolimus-related hypertension is well known, the underlying mechanisms are not. Here, we test whether tacrolimus-induced hypertension involves the RhoA (Ras homolog family member A)/ROCK (Rho-associated protein kinase) pathway in male C57Bl/6 mice. METHODS Intra-arterial blood pressure was measured under anesthesia. The reactivity of renal afferent arterioles and mesenteric arteries were assessed in vitro using microperfusion and wire myography, respectively. RESULTS Tacrolimus induced a transient rise in systolic arterial pressure that was blocked by the RhoA/ROCK inhibitor Fasudil (12.0±0.9 versus 3.2±0.7; P<0.001). Moreover, tacrolimus reduced the glomerular filtration rate, which was also prevented by Fasudil (187±20 versus 281±8.5; P<0.001). Interestingly, tacrolimus enhanced the sensitivity of afferent arterioles and mesenteric arteries to Ang II (angiotensin II), likely due to increased intracellular Ca2+ mobilization and sensitization. Fasudil prevented increased Ang II-sensitivity and blocked Ca2+ mobilization and sensitization. Preincubation of mouse aortic vascular smooth muscle cells with tacrolimus activated the RhoA/ROCK/MYPT-1 (myosin phosphatase targeting subunit 1) pathway. Further, tacrolimus increased cytoplasmic reactive oxygen species generation in afferent arterioles (107±5.9 versus 163±6.4; P<0.001) and in cultured mouse aortic vascular smooth muscle cells (100±7.5 versus 160±23.2; P<0.01). Finally, the reactive oxygen species scavenger Tempol inhibited tacrolimus-induced Ang II hypersensitivity in afferent arterioles and mesenteric arteries. CONCLUSIONS The RhoA/ROCK pathway may play an important role in tacrolimus-induced hypertension by enhancing Ang II-specific vasoconstriction, and reactive oxygen species may participate in this process by activating the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Lingyan Fei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Fang Dong
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Lanyu Xie
- College of Clinical Medicine, Nanchang University, China (L.X.)
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Jie Guo
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Xiaoqiu Ren
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.R., Q.W.)
| | - Yi Yang
- Department of Nephrology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (Y.Y.)
| | - Liang Zhao
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China (L.Z., G.Z.)
| | - Gensheng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China (L.Z., G.Z.)
| | - Honghong Wang
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.)
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| | - Luyang Yu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China (L.Y.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (R.L.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (A.P., P.B.P., E.Y.L.)
| | - Pontus B Persson
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (A.P., P.B.P., E.Y.L.)
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Sweden (M.H.).,Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Sweden (M.H.)
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.R., Q.W.)
| | - En Yin Lai
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.).,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (F.D., X.Q., J.G., H.W., E.Y.L.).,Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (A.P., P.B.P., E.Y.L.)
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.W., S.J., L.F., Y.L., M.Z., C.T., E.Y.L., Z.Z.)
| |
Collapse
|
7
|
Mrowka R. Recent advances in kidney research. Acta Physiol (Oxf) 2022; 235:e13820. [PMID: 35403838 DOI: 10.1111/apha.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ralf Mrowka
- Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
8
|
Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, Pu M, Lu A, Symons JD, Yang T. Role of (Pro)Renin Receptor in Cyclosporin A-Induced Nephropathy. Am J Physiol Renal Physiol 2022; 322:F437-F448. [PMID: 35073210 PMCID: PMC9662808 DOI: 10.1152/ajprenal.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and BUN levels, decreased creatinine clearance and induced renal inflammation, apoptosis as well as interstitial fibrosis, elevated urinary N-acetyl-β-D-glucosaminidase activity and urinary kidney injury molecular 1 content. Each index of renal injury was attenuated following a 2-wk treatment with a PRR decoy inhibitor PRO20. While CsA rats with kidney injury displayed increased renal sPRR abundance, plasma sPRR, renin activity, Ang II, and heightened urinary total prorenin/renin content; RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephotoxic effects of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanting Chen
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Brittin Hekking
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Cheriyan AM, Ume AC, Francis CE, King KN, Linck VA, Bai Y, Cai H, Hoover RS, Ma HP, Gooch JL, Williams CR. Calcineurin A-α suppression drives nuclear factor-κB-mediated NADPH oxidase-2 upregulation. Am J Physiol Renal Physiol 2021; 320:F789-F798. [PMID: 33615888 PMCID: PMC8424558 DOI: 10.1152/ajprenal.00254.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Calcineurin inhibitors (CNIs) are vital immunosuppressive therapies in the management of inflammatory conditions. A long-term consequence is nephrotoxicity. In the kidneys, the primary, catalytic calcineurin (CnA) isoforms are CnAα and CnAβ. Although the renal phenotype of CnAα-/- mice substantially mirrors CNI-induced nephrotoxicity, the mechanisms downstream of CnAα are poorly understood. Since NADPH oxidase-2 (Nox2)-derived oxidative damage has been implicated in CNI-induced nephrotoxicity, we hypothesized that CnAα inhibition drives Nox2 upregulation and promotes oxidative stress. To test the hypothesis, Nox2 regulation was investigated in kidneys from CnAα-/-, CnAβ-/-, and wild-type (WT) littermate mice. To identify the downstream mediator of CnAα, nuclear factor of activated T cells (NFAT) and NF-κB regulation was examined. To test if Nox2 is transcriptionally regulated via a NF-κB pathway, CnAα-/- and WT renal fibroblasts were treated with the NF-κB inhibitor caffeic acid phenethyl ester. Our findings showed that cyclosporine A treatment induced Nox2 upregulation and oxidative stress. Furthermore, Nox2 upregulation and elevated ROS generation occurred only in CnAα-/- mice. In these mice, NF-κB but not NFAT activity was increased. In CnAα-/- renal fibroblasts, NF-κB inhibition prevented Nox2 upregulation and reactive oxygen species (ROS) generation. In conclusion, these findings indicate that 1) CnAα loss stimulates Nox2 upregulation, 2) NF-κB is a novel CnAα-regulated transcription factor, and 3) NF-κB mediates CnAα-induced Nox2 and ROS regulation. Our results demonstrate that CnAα plays a key role in Nox2 and ROS generation. Furthermore, these novel findings provide evidence of divergent CnA isoform signaling pathways. Finally, this study advocates for CnAα-sparing CNIs, ultimately circumventing the CNI nephrotoxicity.NEW & NOTEWORTHY A long-term consequence of calcineurin inhibitors (CNIs) is oxidative damage and nephrotoxicity. This study indicates that NF-κB is a novel calcineurin-regulated transcription factor that is activated with calcineurin inhibition, thereby driving oxidative damage in CNI nephropathy. These findings provide additional evidence of divergent calcineurin signaling pathways and suggest that selective CNIs could improve the long-term outcomes of patients by mitigating renal side effects.
Collapse
Affiliation(s)
- Aswathy M Cheriyan
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
| | - Adaku C Ume
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Cynthia E Francis
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia
| | - Keyona N King
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
| | - Valerie A Linck
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
| | - Yun Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia
| | - Hui Cai
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Heping P Ma
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
| | - Jennifer L Gooch
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Clintoria R Williams
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University, Atlanta, Georgia
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
10
|
Affiliation(s)
- Isabel Auge
- Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|