1
|
Satbhai KM, Marques ES, Ranjan R, Timme-Laragy AR. Single-cell RNA sequencing reveals tissue-specific transcriptomic changes induced by perfluorooctanesulfonic acid (PFOS) in larval zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137515. [PMID: 39947082 PMCID: PMC12038816 DOI: 10.1016/j.jhazmat.2025.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 04/16/2025]
Abstract
Perfluorooctanesulfonic acid (PFOS) elicits adverse effects on numerous organs and developmental processes but the mechanisms underlying these effects are not well understood. Here, we use single-cell RNA-sequencing to assess tissue-specific transcriptomic changes in zebrafish (Danio rerio) larvae exposed to 16 µM PFOS or dimethylsulfoxide (0.01 %) from 3-72 h post fertilization (hpf). Data analysis was multi-pronged and included pseudo-bulk, untargeted clustering, informed pathway queries, and a cluster curated for hepatocyte biomarkers (fabp10a, and apoa2). Overall, 8.63 % (2390/27698) genes were significantly differentially expressed. Results from untargeted analysis revealed 22 distinct clusters that were manually annotated to specific tissues using a weight-of-evidence approach. The clusters with the highest number of significant differentially expressed genes (DEGs) were digestive organs, muscle, and otolith. Additionally, we assessed the distribution of pathway-specific genes known to be involved in PFOS toxicity: the PPAR pathway, β-oxidation of fatty acids, the Nfe2l2 pathway, and epigenetic modifications by DNA methylation, across clusters and identified the blood-related tissue to be the most sensitive. The curated hepatocyte cluster showed 220 significant DEGs and was enriched for the Notch signaling pathway. These findings provide insights into both established and novel sensitive target tissues and molecular mechanisms of developmental toxicity of PFOS.
Collapse
Affiliation(s)
- Kruuttika M Satbhai
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JOB, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon PJ, Costa MA, Davidson AE, Dawson SJ, Elhassan EAE, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison HH, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong ACM, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery in the 100,000 Genomes Project. Nature 2025:10.1038/s41586-025-08623-w. [PMID: 40011789 DOI: 10.1038/s41586-025-08623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Up to 80% of rare disease patients remain undiagnosed after genomic sequencing1, with many probably involving pathogenic variants in yet to be discovered disease-gene associations. To search for such associations, we developed a rare variant gene burden analytical framework for Mendelian diseases, and applied it to protein-coding variants from whole-genome sequencing of 34,851 cases and their family members recruited to the 100,000 Genomes Project2. A total of 141 new associations were identified, including five for which independent disease-gene evidence was recently published. Following in silico triaging and clinical expert review, 69 associations were prioritized, of which 30 could be linked to existing experimental evidence. The five associations with strongest overall genetic and experimental evidence were monogenic diabetes with the known β cell regulator3,4 UNC13A, schizophrenia with GPR17, epilepsy with RBFOX3, Charcot-Marie-Tooth disease with ARPC3 and anterior segment ocular abnormalities with POMK. Further confirmation of these and other associations could lead to numerous diagnoses, highlighting the clinical impact of large-scale statistical approaches to rare disease-gene association discovery.
Collapse
Affiliation(s)
- Valentina Cipriani
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Letizia Vestito
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Emma F Magavern
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Julius O B Jacobsen
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Elijah R Behr
- Cardiology Section, Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George's, University of London, London, UK
- Cardiology Department, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Marta Bertoli
- Northern Genetics Centre, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Detlef Bockenhauer
- Paediatric Nephrology, University Hospital and Catholic University Leuven, Leuven, Belgium
- Department of Renal Medicine, University College London, London, UK
| | - Michael R Bowl
- UCL Ear Institute, University College London, London, UK
| | - Kate Burley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Patrick Chinnery
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Peter J Conlon
- Department of Medicine, Royal College of Surgeons in Ireland and Department of Nephrology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Marcos A Costa
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alice E Davidson
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Sally J Dawson
- UCL Ear Institute, University College London, London, UK
| | - Elhussein A E Elhassan
- Department of Medicine, Royal College of Surgeons in Ireland and Department of Nephrology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Marta Futema
- Cardiology Section, Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George's, University of London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | - Sonia García-Ruiz
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cecilia Gonzalez Corcia
- Pediatric Cardiology, CHU Sainte Justine, University of Montreal, Montreal, Quebec, Canada
- Mc Gill University, Montreal, Quebec, Canada
| | - Helen R Griffin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Amy R Hicks
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Henry Houlden
- UCL Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK
| | | | - Siying Lin
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hannah H Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ruxandra Neatu
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, QMUL, London, UK
| | - Albert C M Ong
- Kidney Genetics Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alistair T Pagnamenta
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Shamima Rahman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Neil Rajan
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Biomedical Research Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mina Ryten
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, London, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - John A Sayer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, The Newcastle upon Tyne NHS Foundation Trust Hospitals, Newcastle upon Tyne, UK
- NIHR Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Claire L Shovlin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jenny C Taylor
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Omri Teltsh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Arianna Tucci
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Laura M Watts
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Foundation Trust, Oxford, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, London, UK
| | | | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Mark Caulfield
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Damian Smedley
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Xie Y, Tang Y, Yang J, Atta M, Wang N, Qin H. Sesamol Alleviated Lipotoxicity-Induced Dysfunction in MIN6 Cells via Facilitating Cellular Senescence Caused by Endoplasmic Reticulum Stress. J Biochem Mol Toxicol 2024; 38:e70038. [PMID: 39470143 DOI: 10.1002/jbt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Obesity is found to be a significant risk factor for type 2 diabetes mellitus (T2DM), attributed to lipotoxicity-induced β-cell dysfunction. However, the specific mechanism involved in the process remains incompletely unclarified. The current study demonstrated lipotoxicity resulted in the activation of ER stress, which increased the protein level of TXNIP, thereby inducing senescence-assiciated dysfunction in MIN6 cells under high fat environment. And we also found sesamol, a natural functional component extracted from sesame, was able to alleviate senescence-associated β-cell dysfunction induced by lipotoxicity by inhibiting ER stress and TXNIP. Our findings provided novel insights into senescence-related T2DM and propose innovative therapeutic approaches for utilizing sesamol in the treatment of T2DM in the obese elderly population.
Collapse
Affiliation(s)
- Yan Xie
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yongyan Tang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jinxin Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mahnoor Atta
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Nan Wang
- Department of Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Ka M, Hawkins E, Pouponnot C, Duvillié B. Modelling human diabetes ex vivo: a glance at maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2024; 15:1427413. [PMID: 39387055 PMCID: PMC11461259 DOI: 10.3389/fendo.2024.1427413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes is a complex metabolic disease which most commonly has a polygenic origin; however, in rare cases, diabetes may be monogenic. This is indeed the case in both Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. These disease subtypes are believed to be simpler than Type 1 (T1D) and Type 2 Diabetes (T2D), which allows for more precise modelling. During the three last decades, many studies have focused on rodent models. These investigations provided a wealth of knowledge on both pancreas development and beta cell function. In particular, they allowed the establishment of a hierarchy of the transcription factors and highlighted the role of microenvironmental factors in the control of progenitor cell proliferation and differentiation. Transgenic mice also offered the possibility to decipher the mechanisms that define the functional identity of the pancreatic beta cells. Despite such interest in transgenic mice, recent data have also indicated that important differences exist between mice and human. To overcome these limitations, new human models are necessary. In the present review, we describe these ex vivo models, which are created using stem cells and organoids, and represent an important step toward islet cell therapy and drug discovery.
Collapse
Affiliation(s)
- Moustapha Ka
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Eleanor Hawkins
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| |
Collapse
|
5
|
Persson PB, Bondke Persson A. Color in physiology. Acta Physiol (Oxf) 2024; 240:e14182. [PMID: 38783785 DOI: 10.1111/apha.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Pontus B Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Yamagata K, Tsuyama T, Sato Y. Roles of β-Cell Hypoxia in the Progression of Type 2 Diabetes. Int J Mol Sci 2024; 25:4186. [PMID: 38673770 PMCID: PMC11050445 DOI: 10.3390/ijms25084186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic β-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the β-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect and β-cell loss through various mechanisms, including the activation of hypoxia-inducible factors, induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review focuses on advances in our understanding of the contribution of β-cell hypoxia to the development of β-cell dysfunction in type 2 diabetes. A better understanding of β-cell hypoxia might be useful in the development of new strategies for treating type 2 diabetes.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| |
Collapse
|
7
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
8
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JO, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon P, Costa M, Davidson AE, Dawson SJ, Elhassan E, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison H, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong AC, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery from burden analysis of the 100,000 Genomes Project data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.20.23300294. [PMID: 38196618 PMCID: PMC10775325 DOI: 10.1101/2023.12.20.23300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of β cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.
Collapse
|
9
|
Cha J, Tong X, Walker EM, Dahan T, Cochrane VA, Ashe S, Russell R, Osipovich AB, Mawla AM, Guo M, Liu JH, Loyd ZA, Huising MO, Magnuson MA, Hebrok M, Dor Y, Stein R. Species-specific roles for the MAFA and MAFB transcription factors in regulating islet β cell identity. JCI Insight 2023; 8:e166386. [PMID: 37606041 PMCID: PMC10543725 DOI: 10.1172/jci.insight.166386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet β cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in β cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human β cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D β cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human β cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-β cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional β cell signature.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily M. Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Tehila Dahan
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Veronica A. Cochrane
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sudipta Ashe
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ronan Russell
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alex M. Mawla
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jin-hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zachary A. Loyd
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Tsuyama T, Sato Y, Yoshizawa T, Matsuoka T, Yamagata K. Hypoxia causes pancreatic β-cell dysfunction and impairs insulin secretion by activating the transcriptional repressor BHLHE40. EMBO Rep 2023; 24:e56227. [PMID: 37341148 PMCID: PMC10398664 DOI: 10.15252/embr.202256227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
Hypoxia can occur in pancreatic β-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on β-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human β-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or β-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic β-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in β-cells that inhibit insulin secretion by suppressing MAFA expression.
Collapse
Affiliation(s)
- Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Takaaki Matsuoka
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazuya Yamagata
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Medical Biochemistry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
11
|
Asadollahi S, Hadizadeh M, Namiranian N, Kalantar SM, Firoozabadi AD, Injinari N. Misexpression of LINC01410, FOSL1, and MAFB in peripheral blood mononuclear cells associated with diabetic nephropathy. Gene 2023; 862:147265. [PMID: 36764337 DOI: 10.1016/j.gene.2023.147265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
AIMS Currently, diabetic nephropathy (DN) is considered the leading cause of the end-stage renal disease (ESRD). However, its specific molecular mechanism is still unclear, and there is still a lack of effective diagnostic and therapeutic methods. METHOD A pathway was assumed after bioinformatics analysis of GEO datasets related to individuals with various levels of DN, LINC01410, MAFB, and FOSL1. Then, 46 patients with type 2 diabetes (T2DM) and different levels of albuminuria, and 12 individuals without diabetes, were selected. qPCR was performed to evaluate gene expression. One-way ANOVA followed by Tukey's -and linear trend tests were performed to analyze gene expression in different stages of the disease. Moreover, receiver operating characteristic (ROC) curves and the correlation between LINC01410, FOSL1, and MAFB were analyzed. RESULTS LINC01410, MAFB, and FOSL1 were selected based on bioinformatics analyses. The qPCR results showed that the expression of LINC01410 decreased, and FOSL1 and MAFB increased in micro-and macroalbuminuria groups compared to normoalbuminuria groups (P < 0.05). ROC curves demonstrated a significant diagnostic accuracy of LINC01410, MAFB, and FOSL1 between DN and participants with normoalbuminuria (P < 0.05). Pearson's correlation analysis revealed a positive association between the expressions of FOSL1 and MAFB (p = 0.01, r = 0.39). However, there was no correlation between LINC01410 with MAFB and FOSL1 (p = 0.23 and p = 0.21, respectively). CONCLUSION Dysregulation of LINC01410, MAFB, and FOSL1 is related to DN. These results may provide new insights into the role of LINC01410, MAFB, and FOSL1 as potential biomarkers in DN.
Collapse
Affiliation(s)
- Samira Asadollahi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Namiranian
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Meybod Genetic Research Center, Meybod, Yazd, Iran
| | - Ali Dehghani Firoozabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nastaran Injinari
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
12
|
Sosa-Larios TC, Ortega-Márquez AL, Rodríguez-Aguilera JR, Vázquez-Martínez ER, Domínguez-López A, Morimoto S. A low-protein maternal diet during gestation affects the expression of key pancreatic β-cell genes and the methylation status of the regulatory region of the MafA gene in the offspring of Wistar rats. Front Vet Sci 2023; 10:1138564. [PMID: 36992977 PMCID: PMC10040775 DOI: 10.3389/fvets.2023.1138564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Maternal nutrition during gestation has important effects on gene expression-mediated metabolic programming in offspring. To evaluate the effect of a protein-restricted maternal diet during gestation, pancreatic islets from male progeny of Wistar rats were studied at postnatal days (PND) 36 (juveniles) and 90 (young adults). The expression of key genes involved in β-cell function and the DNA methylation pattern of the regulatory regions of two such genes, Pdx1 (pancreatic and duodenal homeobox 1) and MafA (musculoaponeurotic fibrosarcoma oncogene family, protein A), were investigated. Gene expression analysis in the pancreatic islets of restricted offspring showed significant differences compared with the control group at PND 36 (P < 0.05). The insulin 1 and 2 (Ins1 and Ins2), Glut2 (glucose transporter 2), Pdx1, MafA, and Atf2 (activating transcription factor 2), genes were upregulated, while glucokinase (Gck) and NeuroD1 (neuronal differentiation 1) were downregulated. Additionally, we studied whether the gene expression differences in Pdx1 and MafA between control and restricted offspring were associated with differential DNA methylation status in their regulatory regions. A decrease in the DNA methylation levels was found in the 5' flanking region between nucleotides −8118 to −7750 of the MafA regulatory region in restricted offspring compared with control pancreatic islets. In conclusion, low protein availability during gestation causes the upregulation of MafA gene expression in pancreatic β-cells in the male juvenile offspring at least in part through DNA hypomethylation. This process may contribute to developmental dysregulation of β-cell function and influence the long-term health of the offspring.
Collapse
Affiliation(s)
- Tonantzin C. Sosa-Larios
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Ana L. Ortega-Márquez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Jesús R. Rodríguez-Aguilera
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar R. Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aaron Domínguez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- *Correspondence: Sumiko Morimoto
| |
Collapse
|
13
|
Wu R, Karagiannopoulos A, Eliasson L, Renström E, Luan C, Zhang E. The Calcium Channel Subunit Gamma-4 as a Novel Regulator of MafA in Pancreatic Beta-Cell Controls Glucose Homeostasis. Biomedicines 2022; 10:770. [PMID: 35453520 PMCID: PMC9030882 DOI: 10.3390/biomedicines10040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) are high-risk factors of diabetes development and may be caused by defective insulin secretion in pancreatic beta-cells. Glucose-stimulated insulin secretion is mediated by voltage-gated Ca2+ (CaV) channels in which the gamma-4 subunit (CaVγ4) is required for the beta-cell to maintain its differentiated state. We here aim to explore the involvement of CaVγ4 in controlling glucose homeostasis by employing the CaVγ4-/- mice to study in vivo glucose-metabolism-related phenotypes and glucose-stimulated insulin secretion, and to investigate the underlying mechanisms. We show that CaVγ4-/- mice exhibit perturbed glucose homeostasis, including IFG and IGT. Glucose-stimulated insulin secretion is blunted in CaVγ4-/- mouse islets. Remarkably, CaVγ4 deletion results in reduced expression of the transcription factor essential for beta-cell maturation, MafA, on both mRNA and protein levels in islets from human donors and CaVγ4-/- mice, as well as in INS-1 832/13 cells. Moreover, we prove that CaMKII is responsible for mediating this regulatory pathway linked between CaVγ4 and MafA, which is further confirmed by human islet RNA-seq data. We demonstrate that CaVγ4 is a key player in preserving normal blood glucose homeostasis, which sheds light on CaVγ4 as a novel target for the treatment of prediabetes through correcting the impaired metabolic status.
Collapse
|