1
|
Gao X, Fan X, Yu X, Wang R, Zhang B, Li Y, Liu X, Yang Y. p66shc exacerbates the progression of obstructive nephropathy through apoptosis, mitochondrial damage, and EMT. J Pediatr Urol 2025:S1477-5131(25)00158-5. [PMID: 40234179 DOI: 10.1016/j.jpurol.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Many factors contribute to hydronephrosis, ultimately resulting in renal fibrosis and even deterioration of renal function. This study investigated the pathogenic role of p66shc, a redox-regulatory protein, in hydronephrosis-induced renal injury. OBJECTIVE This study focused on the mechanism of p66shc in renal fibrosis associated with obstructive nephropathy. METHODS The expression of p66shc was found in kidney samples from pediatric hydronephrosis patients. A complete unilateral ureteral obstruction (CUUO) model was established in neonatal mice to recapitulate hydronephrotic progression. Cell proliferation, apoptosis, reactive oxygen species (ROS), mitochondrial damage, and degree of epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells were studied following p66shc silencing and overexpression. We also investigated the therapeutic effects of silencing p66shc in vivo and carried out RNA sequencing after overexpressing p66shc in cells. RESULTS p66shc inhibited renal tubular epithelial cell growth, exacerbated cell oxidative and mitochondrial damage, and promoted cell apoptosis and EMT. Silencing its expression in vivo could efficiently reduce renal fibrosis. Combined with RNA sequencing, we analyzed the potential molecular mechanisms of p66shc downstream. CONCLUSION p66shc enhances cell damage and the EMT process in obstructive nephropathy. Suppressing the expression of p66shc is one potential strategy for mitigating renal fibrotic progression.
Collapse
Affiliation(s)
- Xilin Gao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaohan Yu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Buzhou Zhang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yanqiu Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
3
|
Goorani S, Khan AH, Mishra A, El-Meanawy A, Imig JD. Kidney Injury by Unilateral Ureteral Obstruction in Mice Lacks Sex Differences. Kidney Blood Press Res 2024; 49:69-80. [PMID: 38185105 PMCID: PMC10877550 DOI: 10.1159/000535809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Renal fibrosis is a critical event in the development and progression of chronic kidney disease (CKD), and it is considered the final common pathway for all types of CKD. The prevalence of CKD is higher in females; however, males have a greater prevalence of end-stage renal disease. In addition, low birth weight and low nephron number are associated with increased risk for CKD. This study examined the development and severity of unilateral ureter obstruction (UUO)-induced renal fibrosis in male and female wild-type (ROP +/+) and mutant (ROP Os/+) mice, a mouse model of low nephron number. METHODS Male and female ROP +/+ and ROP Os/+ mice were subjected to UUO, and kidney tissue was collected at the end of the 10-day experimental period. Kidney histological analysis and mRNA expression determined renal fibrosis, tubular injury, collagen deposition, extracellular matrix proteins, and immune cell infiltration. RESULTS Male and female UUO mice demonstrated marked renal injury, kidney fibrosis, and renal extracellular matrix production. Renal fibrosis and α-smooth muscle actin were increased to a similar degree in ROP +/+ and ROP Os/+ mice with UUO of either sex. There were also no sex differences in renal tubular cast formation or renal infiltration of macrophage in ROP +/+ and ROP Os/+ UUO mice. Interestingly, renal fibrosis and α-smooth muscle actin were 1.5-3-fold greater in UUO-ROP +/+ compared to UUO-ROP Os/+ mice. Renal inflammation phenotypes following UUO were also 30-45% greater in ROP +/+ compared to ROP Os/+ mice. Likewise, expression of extracellular matrix and renal fibrotic genes was greater in UUO-ROP +/+ mice compared to UUO-ROP Os/+ mice. In contrast to these findings, ROP Os/+ mice with UUO demonstrated glomerular hypertrophy with 50% greater glomerular tuft area compared to ROP +/+ with UUO. Glomerular hypertrophy was not sex-dependent in any of the genotypes of ROP mice. These findings provide evidence that low nephron number contributes to UUO-induced glomerular hypertrophy in ROP Os/+ mice but does not enhance renal fibrosis, inflammation, and renal tubular injury. CONCLUSION Taken together, we demonstrate that low nephron number contributes to enhanced glomerular hypertrophy but not kidney fibrosis and tubular injury. We also demonstrate that none of the changes caused by UUO was affected by sex in any of the ROP mice genotypes.
Collapse
Affiliation(s)
- Samaneh Goorani
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA,
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA,
| | - Abdul Hye Khan
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Departments of Medical Physiology & Pharmacology, Anesthesiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Abhishek Mishra
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John D Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
4
|
Peleli M, Antoniadou I, Rodrigues-Junior DM, Savvoulidou O, Caja L, Katsouda A, Ketelhuth DFJ, Stubbe J, Madsen K, Moustakas A, Papapetropoulos A. Cystathionine gamma-lyase (CTH) inhibition attenuates glioblastoma formation. Redox Biol 2023; 64:102773. [PMID: 37300955 PMCID: PMC10363444 DOI: 10.1016/j.redox.2023.102773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is the most common type of adult brain tumor with extremely poor survival. Cystathionine-gamma lyase (CTH) is one of the main Hydrogen Sulfide (H2S) producing enzymes and its expression contributes to tumorigenesis and angiogenesis but its role in glioblastoma development remains poorly understood. METHODS and Principal Results: An established allogenic immunocompetent in vivo GBM model was used in C57BL/6J WT and CTH KO mice where the tumor volume and tumor microvessel density were blindly measured by stereological analysis. Tumor macrophage and stemness markers were measured by blinded immunohistochemistry. Mouse and human GBM cell lines were used for cell-based analyses. In human gliomas, the CTH expression was analyzed by bioinformatic analysis on different databases. In vivo, the genetic ablation of CTH in the host led to a significant reduction of the tumor volume and the protumorigenic and stemness transcription factor sex determining region Y-box 2 (SOX2). The tumor microvessel density (indicative of angiogenesis) and the expression levels of peritumoral macrophages showed no significant changes between the two genotypes. Bioinformatic analysis in human glioma tumors revealed that higher CTH expression is positively correlated to SOX2 expression and associated with worse overall survival in all grades of gliomas. Patients not responding to temozolomide have also higher CTH expression. In mouse or human GBM cells, pharmacological inhibition (PAG) or CTH knockdown (siRNA) attenuates GBM cell proliferation, migration and stem cell formation frequency. MAJOR CONCLUSIONS Inhibition of CTH could be a new promising target against glioblastoma formation.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winslowsvej 21, 3, 5000, Odense C, Denmark
| | - Ivi Antoniadou
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dorival Mendes Rodrigues-Junior
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
| | - Odysseia Savvoulidou
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winslowsvej 21, 3, 5000, Odense C, Denmark
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
| | - Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniel F J Ketelhuth
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winslowsvej 21, 3, 5000, Odense C, Denmark; Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winslowsvej 21, 3, 5000, Odense C, Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winslowsvej 21, 3, 5000, Odense C, Denmark; Department of Pathology, Odense University Hospital, J.B Winslowsvej 15, 5000, Odense C, Denmark
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden.
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Labes R, Roegner K. Prolyl hydroxylase inhibitors, polydrug use, and the phosphoproteome. Acta Physiol (Oxf) 2023; 237:e13898. [PMID: 36251506 DOI: 10.1111/apha.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Robert Labes
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kameliya Roegner
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|