1
|
Tsang HF, Pei XM, Wong YKE, Wong SCC. Plasma Circulating mRNA Profile for the Non-Invasive Diagnosis of Colorectal Cancer Using NanoString Technologies. Int J Mol Sci 2024; 25:3012. [PMID: 38474258 DOI: 10.3390/ijms25053012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer deaths in developed countries. Early CRC may have no symptoms and symptoms usually appear with more advanced diseases. Regular screening can identify people who are at increased risk of CRC in order to offer earlier treatment. A cost-effective non-invasive platform for the screening and monitoring of CRC patients allows early detection and appropriate treatment of the disease, and the timely application of adjuvant therapy after surgical operation is needed. In this study, a cohort of 71 plasma samples that include 48 colonoscopy- and histopathology-confirmed CRC patients with TNM stages I to IV were recruited between 2017 and 2019. Plasma mRNA profiling was performed in CRC patients using NanoString nCounter. Normalized data were analyzed using a Mann-Whitney U test to determine statistically significant differences between samples from CRC patients and healthy subjects. A multiple-group comparison of clinical phenotypes was performed using the Kruskal-Wallis H test for statistically significant differences between multiple groups. Among the 27 selected circulating mRNA markers, all of them were found to be overexpressed (gene expression fold change > 2) in the plasma of patients from two or more CRC stages. In conclusion, NanoString-based targeted plasma CRC-associated mRNAs circulating the marker panel that can significantly distinguish CRC patients from a healthy population were developed for the non-invasive diagnosis of CRC using peripheral blood samples.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
2
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
3
|
Maqbool M, Khan A, Shahzad A, Sarfraz Z, Sarfraz A, Aftab H, Jaan A. Predictive biomarkers for colorectal cancer: a state-of-the-art systematic review. Biomarkers 2023; 28:562-598. [PMID: 37585692 DOI: 10.1080/1354750x.2023.2247185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) poses a substantial health burden, with early detection paramount for improved prognosis. This study aims to evaluate potential CRC biomarkers and detection techniques. MATERIALS AND METHODS This systematic review, reported in adherence to PRISMA Statement 2020 guidelines, collates the latest research on potential biomarkers and detection/prognosis methods for CRC, spanning the last decade. RESULTS Out of the 38 included studies, diverse biomarkers and detection methods emerged, with DNA methylation markers like SFRP2 and SDC2, microRNAs including miR-1290, miR-506, and miR-4316, and serum and plasma markers such as NTS levels and U2 snRNA fragments standing out. Methylated cfDNA and m5C methylation alteration in immune cells of the blood, along with circular RNA, showed promise as diagnostic markers. Meanwhile, techniques involving extracellular vesicles and lateral flow immunoassays exhibited potential for swift and effective CRC screening. DISCUSSION Our state-of-the-art review identifies potential biomarkers, including SFRP2, SDC2, miR-1290, miR-506, miR-4316, and U2 snRNA fragments, with significant potential in enhancing CRC detection. However, comprehensive validation studies and a rigorous evaluation of clinical utility and cost-effectiveness remain necessary before integration into routine clinical practice. CONCLUSION The findings emphasize the need for continued research into biomarkers and detection methods to improve patient outcomes.
Collapse
Affiliation(s)
- Moeez Maqbool
- Sheikh Zayed Medical College, Rahim Yar Khan, Pakistan
| | - Aden Khan
- Fatima Jinnah Medical University, Lahore, Pakistan
| | | | | | | | - Hinna Aftab
- CMH Lahore Medical and Dental College, Lahore, Pakistan
| | - Ali Jaan
- Rochester General Hospital, Rochester, NY, USA
| |
Collapse
|
4
|
Huang CS, Terng HJ, Hwang YT. Gene-Function-Based Clusters Explore Intricate Networks of Gene Expression of Circulating Tumor Cells in Patients with Colorectal Cancer. Biomedicines 2023; 11:biomedicines11010145. [PMID: 36672653 PMCID: PMC9855519 DOI: 10.3390/biomedicines11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is a complex disease characterized by dynamically deregulated gene expression and crosstalk between signaling pathways. In this study, a new approach based on gene-function-based clusters was introduced to explore the CRC-associated networks of gene expression. Each cluster contained genes involved in coordinated regulatory activity, such as RAS signaling, the cell cycle process, transcription, or translation. A retrospective case-control study was conducted with the inclusion of 119 patients with histologically confirmed colorectal cancer and 308 controls. The quantitative expression data of 15 genes were obtained from the peripheral blood samples of all participants to investigate cluster-gene and gene-gene interactions. DUSP6, MDM2, and EIF2S3 were consistently selected as CRC-associated factors with high significance in all logistic models. CPEB4 became an insignificant factor only when combined with the clusters for cell cycle processes and for transcription. The CPEB4/DUSP6 complex was a prerequisite for the significance of MMD, whereas EXT2, RNF4, ZNF264, WEE1, and MCM4 were affected by more than two clusters. Intricate networks among MMD, RAS signaling factors (DUSP6, GRB2, and NF1), and translation factors (EIF2S3, CPEB4, and EXT2) were also revealed. Our results suggest that limited G1/S transition, uncontrolled DNA replication, and the cap-independent initiation of translation may be dominant and concurrent scenarios in circulating tumor cells derived from colorectal cancer. This gene-function-based cluster approach is simple and useful for revealing intricate CRC-associated gene expression networks. These findings may provide clues to the metastatic mechanisms of circulating tumor cells in patients with colorectal cancer.
Collapse
Affiliation(s)
- Chi-Shuan Huang
- Division of Colorectal Surgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | | | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City 22102, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, Cubiella J. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther 2021; 21:723-738. [PMID: 33507120 DOI: 10.1080/14737140.2021.1882858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most important health problems in the Western world. In order to reduce the burden of the disease, two strategies are proposed: screening and prompt detection in symptomatic patients. Although diagnosis and prevention are mainly based on colonoscopy, fecal hemoglobin detection has been widely implemented as a noninvasive strategy. Various studies aiming to discover blood-based biomarkers have recently emerged.Areas covered: The burgeoning omics field provides diverse high-throughput approaches for CRC blood-based biomarker discovery. In this review, we appraise the most robust and commonly used technologies within the fields of genomics, transcriptomics, epigenomics, proteomics, and metabolomics, together with their targeted validation approaches. We summarize the transference process from the discovery phase until clinical translation. Finally, we review the best candidate biomarkers and their potential clinical applicability.Expert opinion: Some available biomarkers are promising, especially in the field of epigenomics: DNA methylation and microRNA. Transference requires the joint collaboration of basic researchers, intellectual property experts, technology transfer officers and clinicians. Blood-based biomarkers will be selected not only based on their diagnostic accuracy and cost but also on their reliability, applicability to clinical analysis laboratories and their acceptance by the population.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Proteomics Unit, Service of Structural Determination, Proteomics and Genomics, Center for Scientific and Technological Research Support (CACTI), University of Vigo, Vigo, Spain
| | - Joaquin Cubiella
- Department of Gastroenterology, Hospital Universitario De Ourense, Ourense, Spain.,Instituto De Investigación Sanitaria Galicia Sur, Ourense, Spain.,Centro De Investigación Biomédica En Red Enfermedades Hepáticas Y Digestivas, Ourense, Spain
| |
Collapse
|
6
|
Gan X, Wang T, Chen ZY, Zhang KH. Blood-derived molecular signatures as biomarker panels for the early detection of colorectal cancer. Mol Biol Rep 2020; 47:8159-8168. [DOI: 10.1007/s11033-020-05838-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
|
7
|
Zhang X, Song J, Shah BN, Nekhai S, Miasnikova G, Sergueeva A, Prchal JT, Gordeuk VR. Peripheral blood mononuclear cells show prominent gene expression by erythroid progenitors in diseases characterized by heightened erythropoiesis. Br J Haematol 2020; 190:e42-e45. [PMID: 32399971 DOI: 10.1111/bjh.16696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jihyun Song
- Hematology Division, University of Utah, Salt Lake City, UT, USA
| | - Binal N Shah
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA.,Chuvash Republic Clinical Hospital 2, Cheboksary, Russia
| | | | | | - Josef T Prchal
- Hematology Division, University of Utah, Salt Lake City, UT, USA
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Bagheri H, Mosallaei M, Bagherpour B, Khosravi S, Salehi AR, Salehi R. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis. J Gene Med 2020; 22:e3189. [PMID: 32196834 DOI: 10.1002/jgm.3189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a result of the growing prevalence of colorectal cancer (CRC), new screening and early detection methods are required. Among the novel biomarkers, DNA methylation has emerged as a high-potential diagnosis/screening molecular marker. The present study aimed to assess non-invasive early diagnosis of CRC by examining promoter methylation of TFPI2 and NDRG4 genes in peripheral blood mononuclear cells (PBMCs). METHODS Fifty CRC patients and 50 normal controls were recruited to the present study. Quantitative methylation of the promoter region of the TFPI2 and NDRG4 genes was analyzed in DNA extracted from PBMCs of all cases and control subjects using a methylation-quantification endonuclease-resistant DNA (MethyQESD) method. RESULTS The sensitivity and specificity of the TFPI2 gene for the diagnosis of CRC was 88% and 92%, respectively, and, for the NDRG4 gene, it was 86% and 92%, respectively. The methylation range for the TFPI2 gene was 43.93% and 11.56% in patients and controls, respectively, and, for the NDRG4 gene, it was 38.8% in CRC patients and 12.23% in healthy controls (p < 0.001). In addition, we observed that a higher percentage of methylation was correlated with the higher stage of CRC. CONCLUSIONS The results of the present study reveal that PBMCs are reliable sources of methylation analysis for CRC screening. Furthermore, the TFPI2 and NDRG4 genes provide sufficiently high sensitivity and specificity to be nominated for use in a novel noninvasive CRC screening method in PBMCs.
Collapse
Affiliation(s)
- Hadi Bagheri
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| |
Collapse
|
9
|
Transcriptomic Analyses Revealed Systemic Alterations in Gene Expression in Circulation and Tumor Microenvironment of Colorectal Cancer Patients. Cancers (Basel) 2019; 11:cancers11121994. [PMID: 31835892 PMCID: PMC6966620 DOI: 10.3390/cancers11121994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related deaths worldwide, underscoring a need for better understanding of the disease and development of novel diagnostic biomarkers and therapeutic interventions. Herein, we performed transcriptome analyses on peripheral blood mononuclear cells (PBMCs), CRC tumor tissue and adjacent normal tissue from 10 CRC patients and PBMCs from 15 healthy controls. Up regulated transcripts from CRC PBMCs were associated with functions related to immune cell trafficking and cellular movement, while downregulated transcripts were enriched in cellular processes related to cell death. Most affected signaling networks were those involved in tumor necrosis factor (TNF) and interleukin signaling. The expression of selected immune-related genes from the RNA-Seq data were further validated using qRT-PCR. Transcriptome analysis of CRC tumors and ingenuity pathway analysis revealed enrichment in several functional categories related to cellular movement, cell growth and proliferation, DNA replication, recombination and repair, while functional categories related to cell death were suppressed. Upstream regulator analysis revealed activation of ERBB2 and FOXM1 networks. Interestingly, there were 18 common upregulated and 36 common downregulated genes when comparing PBMCs and tumor tissue, suggesting transcriptomic changes in the tumor microenvironment could be reflected, in part, in the periphery with potential utilization as disease biomarkers.
Collapse
|
10
|
Exploratory Analysis of Plasma Neurotensin as a Novel Biomarker for Early Detection of Colorectal Polyp and Cancer. Discov Oncol 2019; 10:128-135. [DOI: 10.1007/s12672-019-00364-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
|
11
|
Chen T, Du D, Chen J, Zhou P, Weinstein JN, Yao L, Liu Y. ZC3H12A Expression in Different Stages of Colorectal Cancer. Oncoscience 2019; 6:301-311. [PMID: 31106233 PMCID: PMC6508193 DOI: 10.18632/oncoscience.480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Identification of CRC patients with early-stage disease provides the opportunity for curative local resection. However, robust markers for stage I tumor prediction are yet to be developed. We analyzed RNA-sequencing data of 221 CRC samples using the TCGA dataset to identify novel biomarkers for stage I CRC. We next validated the TCGA finding in an independent GEO cohort of 290 CRC patients and in a third cohort of 110 CRC tumors and matched normal samples. We further performed correlative analysis of ZC3H12A gene expression with clinicopathologic features and disease-free survival. Expression correlation of ZC3H12A with the chemokine ligands was evaluated via Student’s t-test. In the TCGA cohort, stage I CRC patients had significantly higher ZC3H12A mRNA expression as compared with the other three stages combined and with the other individual stages in a pairwise manner (P<0.001 for all comparisons). The significant association of ZC3H12A gene expression with stages was further validated in the GEO cohort and in the additional third cohort. In support of these findings, we further found that patients with lower ZC3H12A expression had more aggressive tumor features and shorter disease-free survival. Biologically, ZC3H12A expression was significantly correlated with expression of three chemokine ligands (CXCL1, CXCL2 and CXCL3), suggesting that immune response dysregulation likely contributes to CRC development. Our results demonstrate ZC3H12A’s potential role in identification of CRC patients with early-stage disease.
Collapse
Affiliation(s)
- Tao Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Di Du
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Chen
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital of Fudan University, Shanghai, China
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liqing Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Immune Condition of Colorectal Cancer Patients Featured by Serum Chemokines and Gene Expressions of CD4+ Cells in Blood. Can J Gastroenterol Hepatol 2018; 2018:7436205. [PMID: 29992127 PMCID: PMC6016223 DOI: 10.1155/2018/7436205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the most common malignancy worldwide, causes inflammation. We explored the inflammatory pathophysiology of CRC by assessing the peripheral blood parameters. METHODS The differences in gene expression profiles of whole blood cells and cell subpopulations between CRC patients and healthy controls were analyzed using DNA microarray. Serum cytokine/chemokine concentrations in CRC patients and healthy controls were measured via multiplex detection immunoassays. In addition, we explored correlations between the expression levels of certain genes of peripheral CD4+ cells and serum chemokine concentrations. RESULTS The gene expression profiles of peripheral CD4+ cells of CRC patients differed from those of healthy controls, but this was not true of CD8+ cells, CD14+ cells, CD15+ cells, or CD19+ cells. Serum IL-8 and eotaxin-1 levels were significantly elevated in CRC patients, and the levels substantially correlated with the expression levels of certain genes of CD4+ cells. Interestingly, the relationships between gene expression levels in peripheral CD4+ cells and serum IL-8 and eotaxin-1 levels resembled those of monocytes/macrophages, not T cells. CONCLUSIONS Serum IL-8 and eotaxin-1 concentrations increased and were associated with changes in the gene expression of peripheral CD4+ cells in CRC patients.
Collapse
|
13
|
Reynés B, Priego T, Cifre M, Oliver P, Palou A. Peripheral Blood Cells, a Transcriptomic Tool in Nutrigenomic and Obesity Studies: Current State of the Art. Compr Rev Food Sci Food Saf 2018; 17:1006-1020. [DOI: 10.1111/1541-4337.12363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
- Inst. d'Investigació Sanitària Illes Balears (IdISBa); Palma Spain
| | - Teresa Priego
- Dept. of Physiology, Faculty of Medicine; Univ. Complutense de Madrid; Madrid Spain
| | - Margalida Cifre
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
- Inst. d'Investigació Sanitària Illes Balears (IdISBa); Palma Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
- Inst. d'Investigació Sanitària Illes Balears (IdISBa); Palma Spain
| |
Collapse
|
14
|
The role of neurotensin as a novel biomarker in the endoscopic screening of high-risk population for developing colorectal neoplasia. Updates Surg 2017; 69:397-402. [PMID: 28560510 PMCID: PMC5591352 DOI: 10.1007/s13304-017-0464-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/04/2017] [Indexed: 01/13/2023]
Abstract
Colorectal cancer screening programs aim at early detection of cancer to reduce incidence rates and mortality. The objective of this study is to identify the role of neurotensin in the endoscopic screening of high-risk population for developing colorectal neoplasia. Blood samples from patients referred for urgent colonoscopy to investigate symptoms suspicious of colorectal cancer were collected. Blood neurotensin levels were measured using enzyme-linked immunosorbent assay. Colonoscopy findings were used as reference for determining the diagnostic accuracy of blood neurotensin. The study comprised 26 patients in total: 12 healthy and 14 with colon pathology (13 high-grade dysplasia adenomatous polyps, 1 adenocarcinoma). There were no statistically significant differences in the clinical and biochemical parameters between colon pathology and healthy group except neurotensin levels. Pathology in colon was associated with 3.7-fold increase in NT levels. In multivariate analysis, patients with pathology in colon have increased serum neurotensin levels compared to controls adjusted for age, gender, BMI and co-morbidities. The value of 12.93 pg/ml is associated with 87.5% sensitivity and 91.7% specificity for discriminating the colon pathology from normal colonic epithelium (p = 0.001). Neurotensin plasma values differentiate healthy people from patients suffering from colonic pathologies such as adenomatous polyps and cancer. The use of neurotensin as a potential endoscopic screening tool for identifying high-risk population for developing colorectal cancer is promising, but much has to be done before it is validated in larger scale prospective studies.
Collapse
|
15
|
A Highly Predictive Model for Diagnosis of Colorectal Neoplasms Using Plasma MicroRNA: Improving Specificity and Sensitivity. Ann Surg 2017; 264:575-84. [PMID: 27471839 DOI: 10.1097/sla.0000000000001873] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To develop a plasma-based microRNA (miRNA) diagnostic assay specific for colorectal neoplasms, building upon our prior work. BACKGROUND Colorectal neoplasms [colorectal cancer (CRC) and colorectal advanced adenoma (CAA)] frequently develop in individuals at ages when other common cancers also occur. Current screening methods lack sensitivity, specificity, and have poor patient compliance. METHODS Plasma was screened for 380 miRNAs using microfluidic array technology from a "Training" cohort of 60 patients, (10 each) control, CRC, CAA, breast cancer, pancreatic cancer, and lung cancer. We identified uniquely dysregulated miRNAs specific for colorectal neoplasia (P < 0.05, false discovery rate: 5%, adjusted α = 0.0038). These miRNAs were evaluated using single assays in a "Test" cohort of 120 patients. A mathematical model was developed to predict blinded sample identity in a 150 patient "Validation" cohort using repeat-sub-sampling validation of the testing dataset with 1000 iterations each to assess model detection accuracy. RESULTS Seven miRNAs (miR-21, miR-29c, miR-122, miR-192, miR-346, miR-372, and miR-374a) were selected based upon P value, area under the curve (AUC), fold change, and biological plausibility. Area under the curve (±95% confidence interval) for "Test" cohort comparisons were 0.91 (0.85-0.96) between all neoplasia and controls, 0.79 (0.70-0.88) between colorectal neoplasia and other cancers, and 0.98 (0.96-1.0) between CRC and colorectal adenomas. In our "Validation" cohort, our mathematical model predicted blinded sample identity with 69% to 77% accuracy, 67% to 76% accuracy, and 86% to 90% accuracy for each comparison, respectively. CONCLUSIONS Our plasma miRNA assay and prediction model differentiate colorectal neoplasia from patients with other neoplasms and from controls with higher sensitivity and specificity compared with current clinical standards.
Collapse
|
16
|
Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: a systematic review and meta-analysis. Br J Cancer 2017; 116:762-774. [PMID: 28152545 PMCID: PMC5355921 DOI: 10.1038/bjc.2017.12] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is common and associated with significant mortality. Current screening methods for CRC lack patient compliance. microRNAs (miRNAs), identified in body fluids, are negative regulators of gene expression and are dysregulated in many cancers, including CRC. This paper summarises studies identifying blood-based miRNAs dysregulated in CRC compared with healthy controls in an attempt to evaluate their use as a screening tool for the diagnosis of CRC. Methods: A search of electronic databases (PubMed and EMBASE) and grey literature was performed between January 2002 and April 2016. Studies reporting plasma or serum miRNAs in the diagnosis of CRC compared with healthy controls were selected. Patient demographics, type of patient sample (serum or plasma), method of miRNA detection, type of normalisation, and the number of significantly dysregulated miRNAs identified were recorded. Statistical evaluation of dysregulated miRNAs using sensitivity, specificity, and area under the curve (AUC) was performed. Results: Thirty-four studies investigating plasma or serum miRNAs in the diagnosis of CRC were included. A total of 31 miRNAs were found to be either upregulated (n=17) or downregulated (n=14) in CRC cases as compared with controls. Fourteen studies identified panels of ⩾2 dysregulated miRNAs. The highest AUC, 0.943, was identified using a panel of 4 miRNAs with 83.3% sensitivity and 93.1% specificity. Meta-analysis of studies identifying a single dysregulated miRNA in CRC cases compared with controls was performed. Overall sensitivity and specificity of 28 individual miRNAs in the diagnosis of CRC were 76% (95% CI 72%–80%) and 76% (95% CI 72%–80%), respectively, indicating good discriminative ability of miRNAs as biomarkers for CRC. These data did not change with sensitivity analyses. Conclusions: Blood-based miRNAs distinguish patients with CRC from healthy controls with high sensitivity and specificity comparable to other common and invasive currently used screening methods for CRC. In future, miRNAs may be used as a relatively non-invasive blood-based marker for detection of CRC.
Collapse
|
17
|
Hamm A, Prenen H, Van Delm W, Di Matteo M, Wenes M, Delamarre E, Schmidt T, Weitz J, Sarmiento R, Dezi A, Gasparini G, Rothé F, Schmitz R, D'Hoore A, Iserentant H, Hendlisz A, Mazzone M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut 2016; 65:990-1000. [PMID: 25814648 DOI: 10.1136/gutjnl-2014-308988] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cancer immunology is a growing field of research whose aim is to develop innovative therapies and diagnostic tests. Starting from the hypothesis that immune cells promptly respond to harmful stimuli, we used peripheral blood monocytes in order to characterise a distinct gene expression profile and to evaluate its potential as a candidate diagnostic biomarker in patients with colorectal cancer (CRC), a still unmet clinical need. DESIGN We performed a case-control study including 360 peripheral blood monocyte samples from four European oncological centres and defined a gene expression profile specific to CRC. The robustness of the genetic profile and disease specificity were assessed in an independent setting. RESULTS This screen returned 43 putative diagnostic markers, which we refined and validated in the confirmative multicentric analysis to 23 genes with outstanding diagnostic accuracy (area under the curve (AUC)=0.99 (0.99 to 1.00), Se=100.0% (100.0% to 100.0%), Sp=92.9% (78.6% to 100.0%) in multiple-gene receiver operating characteristic analysis). The diagnostic accuracy was robustly maintained in prospectively collected independent samples (AUC=0.95 (0.85 to 1.00), Se=92.6% (81.5% to 100.0%), Sp=92.3% (76.9% to 100.0%). This monocyte signature was expressed at early disease onset, remained robust over the course of disease progression, and was specific for the monocytic fraction of mononuclear cells. The gene modulation was induced specifically by soluble factors derived from transformed colon epithelium in comparison to normal colon or other cancer histotypes. Moreover, expression changes were plastic and reversible, as they were abrogated upon withdrawal of these tumour-released factors. Consistently, the modified set of genes reverted to normal expression upon curative treatment and was specific for CRC. CONCLUSIONS Our study is the first to demonstrate monocyte plasticity in response to tumour-released soluble factors. The identified distinct signature in tumour-educated monocytes might be used as a candidate biomarker in CRC diagnosis and harbours the potential for disease follow-up and therapeutic monitoring.
Collapse
Affiliation(s)
- Alexander Hamm
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Leuven, Belgium
| | - Hans Prenen
- Digestive Oncology, University Hospitals Leuven and Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Mario Di Matteo
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Leuven, Belgium
| | - Mathias Wenes
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Leuven, Belgium
| | - Estelle Delamarre
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Leuven, Belgium
| | - Thomas Schmidt
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Weitz
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany Department of Visceral, Thoracic, and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | | | - Angelo Dezi
- Department of Oncology, San Filippo Neri, Rome, Italy
| | | | - Françoise Rothé
- Medical Oncology Clinic, Institut Jules Bordet, Brussels, Belgium
| | - Robin Schmitz
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Alain Hendlisz
- Medical Oncology Clinic, Institut Jules Bordet, Brussels, Belgium
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Ciarloni L, Ehrensberger SH, Imaizumi N, Monnier-Benoit S, Nichita C, Myung SJ, Kim JS, Song SY, Kim TI, van der Weg B, Meier R, Borovicka J, Beglinger C, Vallet C, Maerten P, Rüegg C, Dorta G. Development and Clinical Validation of a Blood Test Based on 29-Gene Expression for Early Detection of Colorectal Cancer. Clin Cancer Res 2016; 22:4604-11. [PMID: 27126992 DOI: 10.1158/1078-0432.ccr-15-2057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/09/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE A blood test for early detection of colorectal cancer is a valuable tool for testing asymptomatic individuals and reducing colorectal cancer-related mortality. The objective of this study was to develop and validate a novel blood test able to differentiate patients with colorectal cancer and adenomatous polyps (AP) from individuals with a negative colonoscopy. EXPERIMENTAL DESIGN A case-control, multicenter clinical study was designed to collect blood samples from patients referred for colonoscopy or surgery. Predictive algorithms were developed on 75 controls, 61 large AP (LAP) ≥1 cm, and 45 colorectal cancer cases and independently validated on 74 controls, 42 LAP, and 52 colorectal cancer cases (23 stages I-II) as well as on 245 cases including other colorectal findings and diseases other than colorectal cancer. The test is based on a 29-gene panel expressed in peripheral blood mononuclear cells alone or in combination with established plasma tumor markers. RESULTS The 29-gene algorithm detected colorectal cancer and LAP with a sensitivity of 79.5% and 55.4%, respectively, with 90.0% specificity. Combination with the protein tumor markers carcinoembryonic antigen (CEA) and CYFRA21-2 resulted in a specificity increase (92.2%) with a sensitivity for colorectal cancer and LAP detection of 78.1% and 52.3%, respectively. CONCLUSIONS We report the validation of a novel blood test, Colox®, for the detection of colorectal cancer and LAP based on a 29-gene panel and the CEA and CYFRA21-1 plasma biomarkers. The performance and convenience of this routine blood test provide physicians a useful tool to test average-risk individuals unwilling to undergo upfront colonoscopy. Clin Cancer Res; 22(18); 4604-11. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Nichita
- Department of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Seung-Jae Myung
- Asan Medical Centre, Department of Gastroenterology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Si Young Song
- Severance Hospital, Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Il Kim
- Severance Hospital, Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Rémy Meier
- Kantonsspital Liestal, Gastroenterology, Hepatology and Nutrition Department, University Hospital, Liestal, Switzerland
| | - Jan Borovicka
- Kantonsspital St. Gallen, Department of Gastroenterology and Hepatology, St. Gallen, Switzerland
| | | | - Cédric Vallet
- Ensemble Hospitalier de la Côte, Surgery Services, Morges, Switzerland
| | | | - Curzio Rüegg
- Novigenix SA, Epalinges, Switzerland. Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.
| | - Gian Dorta
- Department of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
19
|
Barlev E, Zelig U, Bar O, Segev C, Mordechai S, Kapelushnik J, Nathan I, Flomen F, Kashtan H, Dickman R, Madhala-Givon O, Wasserberg N. A novel method for screening colorectal cancer by infrared spectroscopy of peripheral blood mononuclear cells and plasma. J Gastroenterol 2016; 51:214-221. [PMID: 26112122 DOI: 10.1007/s00535-015-1095-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Early detection of colorectal cancer (CRC) can reduce mortality and morbidity. Current screening methods include colonoscopy and stool tests, but a simple low-cost blood test would increase compliance. This preliminary study assessed the utility of analyzing the entire bio-molecular profile of peripheral blood mononuclear cells (PBMCs) and plasma using Fourier transform infrared (FTIR) spectroscopy for early detection of CRC. METHODS Blood samples were prospectively collected from 62 candidates for CRC screening/diagnostic colonoscopy or surgery for colonic neoplasia. PBMCs and plasma were separated by Ficoll gradient, dried on zinc selenide slides, and placed under a FTIR microscope. FTIR spectra were analyzed for biomarkers and classified by principal component and discriminant analyses. Findings were compared among diagnostic groups. RESULTS Significant changes in multiple bands that can serve as CRC biomarkers were observed in PBMCs (p = ~0.01) and plasma (p = ~0.0001) spectra. There were minor but statistically significant differences in both blood components between healthy individuals and patients with benign polyps. Following multivariate analysis, the healthy individuals could be well distinguished from patients with CRC, and the patients with benign polyps were mostly distributed as a distinct subgroup within the overlap region. Leave-one-out cross-validation for evaluating method performance yielded an area under the receiver operating characteristics curve of 0.77, with sensitivity 81.5% and specificity 71.4%. CONCLUSIONS Joint analysis of the biochemical profile of two blood components rather than a single biomarker is a promising strategy for early detection of CRC. Additional studies are required to validate our preliminary clinical results.
Collapse
Affiliation(s)
- Eyal Barlev
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Zelig
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel.
| | - Omri Bar
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Cheli Segev
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Shaul Mordechai
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Kapelushnik
- Pediatric Hemato-Oncology Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Institute of Hematology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Felix Flomen
- Todos Medical Ltd, 1 HaMada St, 76703, Rehovot, Israel
| | - Hanoch Kashtan
- Division of General Surgery, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Ram Dickman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Osnat Madhala-Givon
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Ciarloni L, Hosseinian S, Monnier-Benoit S, Imaizumi N, Dorta G, Ruegg C. Discovery of a 29-gene panel in peripheral blood mononuclear cells for the detection of colorectal cancer and adenomas using high throughput real-time PCR. PLoS One 2015; 10:e0123904. [PMID: 25876024 PMCID: PMC4395254 DOI: 10.1371/journal.pone.0123904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.
Collapse
Affiliation(s)
- Laura Ciarloni
- Diagnoplex SA, Epalinges, Switzerland
- Novigenix SA, Epalinges, Switzerland
| | - Sahar Hosseinian
- Diagnoplex SA, Epalinges, Switzerland
- Novigenix SA, Epalinges, Switzerland
| | | | - Natsuko Imaizumi
- Diagnoplex SA, Epalinges, Switzerland
- National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gian Dorta
- Department of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Curzio Ruegg
- Novigenix SA, Epalinges, Switzerland
- National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| | | |
Collapse
|
21
|
Chaussabel D. Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol 2015; 27:58-66. [PMID: 25823891 DOI: 10.1016/j.smim.2015.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
Abstract
The immune system plays a key role in health maintenance and pathogenesis of a wide range of diseases. Leukocytes that are present in the blood convey valuable information about the status of the immune system. Blood transcriptomics, which consists in profiling blood transcript abundance on genome-wide scales, has gained in popularity over the past several years. Indeed, practicality and simplicity largely makes up for what this approach may lack in terms of cell population-level resolution. An extensive survey of the literature reveals increasingly widespread use across virtually all fields of medicine as well as across a number of different animal species, including model organisms but also animals of economical importance. Dissemination across such a wide range of disciplines holds the promise of adding a new perspective, breadth or context, to the considerable depth afforded by whole genome profiling of blood transcript abundance. Indeed, it is only through such contextualization that a truly global perspective will be gained from the use of systems approaches. Also discussed are opportunities that may arise for the fields of immunology and medicine from using blood transcriptomics as a common denominator for developing interactions and cooperation across fields of research that have traditionally been and largely remain compartmentalized. Finally, an argument is made for building immunology research capacity using blood transcriptomics platforms in low-resource and high-disease burden settings.
Collapse
|