1
|
Kappagoda C, Senavirathna I, Agampodi T, Agampodi SB. Role of Toll-like receptor 2 during infection of Leptospira spp: A systematic review. PLoS One 2024; 19:e0312466. [PMID: 39729468 DOI: 10.1371/journal.pone.0312466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar. Cochrane guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed by this systematic review. The National Institute of Health Quality Assessment tool, Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool, and Office of Health Assessment and Translation extended tool were used to assess the risk of bias of the studies. Out of 2458 studies retrieved, 35 were selected for the systematic review. These comprised 3 human, 17 in-vitro, 5 in-vivo, 3 ex-vivo, and 7 studies with combined experimental models. We assessed the direct TLR2 expression and indirect TLR2 involvement via the secretion/mRNA expression of immune effectors during leptospirosis. Notably, we observed the secretion/mRNA expression of several cytokines (IL6, IL8, IL-1β, TNFα, IFNγ, IL10, CCL2/MCP-1, CCL10, COX2, CXCL1/KC, CXCL2/MIP2) and immune effectors (hBD2, iNOS, Fibronectin, Oxygen, and Nitrogen reactive species) as key aspects of host TLR2 responses during leptospirosis. Even though increased TLR2 expression in in-vivo and in-vitro studies was evident, human studies reported mixed results showing that the postulated effect of TLR2 response based on other studies may not be valid for human leptospirosis. Besides the role of TLR2 in response to leptospirosis, the involvement of TLR4 and TLR5 was identified in in-vitro and in-vivo studies. TLR2 expression is inconclusive during human leptospirosis and further studies are needed to examine the immune effector regulation, through TLR2 for mitigating the harmful effects and promoting effective immune responses.
Collapse
Affiliation(s)
- Chamila Kappagoda
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Indika Senavirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Thilini Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Buddhika Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Department of Internal Medicine, Section of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, O'Neil E, Major I, Laffey JG, Rowan N. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom - A potential treatment for inflammatory lung conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152177. [PMID: 34875322 PMCID: PMC9752827 DOI: 10.1016/j.scitotenv.2021.152177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. β-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of β-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between β-glucan content in extracts isolated from seven mushroom species. The extracts with the highest β-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1β insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of β-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.
Collapse
Affiliation(s)
- Emma J Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Department of Graduate Studies, Limerick Institute of Technology, Limerick, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland; Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Robert Pogue
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brazil
| | | | | | | | - Emer O'Neil
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
3
|
Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J Fungi (Basel) 2020; 6:E356. [PMID: 33322069 PMCID: PMC7770584 DOI: 10.3390/jof6040356] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
β-glucans are complex polysaccharides that are found in several plants and foods, including mushrooms. β-glucans display an array of potentially therapeutic properties. β-glucans have metabolic and gastro-intestinal effects, modulating the gut microbiome, altering lipid and glucose metabolism, reducing cholesterol, leading to their investigation as potential therapies for metabolic syndrome, obesity and diet regulation, gastrointestinal conditions such as irritable bowel, and to reduce cardiovascular and diabetes risk. β-glucans also have immune-modulating effects, leading to their investigation as adjuvant agents for cancers (solid and haematological malignancies), for immune-mediated conditions (e.g., allergic rhinitis, respiratory infections), and to enhance wound healing. The therapeutic potential of β-glucans is evidenced by the fact that two glucan isolates were licensed as drugs in Japan as immune-adjuvant therapy for cancer in 1980. Significant challenges exist to further clinical testing and translation of β-glucans. The diverse range of conditions for which β-glucans are in clinical testing underlines the incomplete understanding of the diverse mechanisms of action of β-glucans, a key knowledge gap. Furthermore, important differences appear to exist in the effects of apparently similar β-glucan preparations, which may be due to differences in sources and extraction procedures, another poorly understood issue. This review will describe the biology, potential mechanisms of action and key therapeutic targets being investigated in clinical trials of β-glucans and identify and discuss the key challenges to successful translation of this intriguing potential therapeutic.
Collapse
Affiliation(s)
- Emma J. Murphy
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
| | - Emanuele Rezoagli
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, H91 CF50 Galway, Ireland
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, H91 YR71 Galway, Ireland
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland;
| | - Neil J. Rowan
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
| | - John G. Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, H91 CF50 Galway, Ireland
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, H91 YR71 Galway, Ireland
| |
Collapse
|
4
|
Luo J, Cheng L, Du Y, Mao X, He J, Yu B, Chen D. The anti-inflammatory effects of low- and high-molecular-weight beta-glucans from Agrobacterium sp. ZX09 in LPS-induced weaned piglets. Food Funct 2020; 11:585-595. [PMID: 31858092 DOI: 10.1039/c9fo00627c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The physicochemical characteristics of beta-glucans determine the immune responses of the intestines and whole body. It is hypothesized that glucans with different molecular weights have diverse modes of action on LPS-mediated immune activity. This study aimed to verify the immune-modulatory effects of two types of beta-glucans in LPS-induced weaned piglets. The results indicated that dietary beta-glucan supplementation could prevent losses in body weight gain caused by LPS challenge. Supplementation with different molecular weights of beta-glucans decreased the production of IL-1β and TNF-α and increased IL-10 production, which is likely associated with key factors such as TLR4 and NF-κB. High-molecular-weight beta-glucans seemed to have a strong functional capacity to modulate the innate immune response through the Dectin-1 receptor. Therefore, the results indicate that supplementing piglets with Agrobacterium sp. ZX09 beta-glucans inhibits LPS-mediated depression in the growth performance and plays a protective role during LPS challenge possibly via the Dectin-1 receptor and the TLR4/NF-κB pathway. The results reveal the potential therapeutic activity of purified Agrobacterium sp. ZX09 beta-glucan following experimental LPS infusion.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
6
|
Lindow JC, Tsay AJ, Montgomery RR, Reis EAG, Wunder EA, Araújo G, Nery NRR, Mohanty S, Shaw AC, Lee PJ, Reis MG, Ko AI. Elevated Activation of Neutrophil Toll-Like Receptors in Patients with Acute Severe Leptospirosis: An Observational Study. Am J Trop Med Hyg 2019; 101:585-589. [PMID: 31333152 PMCID: PMC6726964 DOI: 10.4269/ajtmh.19-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Leptospirosis is the leading cause of zoonotic morbidity and mortality globally, yet little is known about the immune mechanisms that may contribute to pathogenesis and severe disease. Although neutrophils are a key component of early immune responses to infection, they have been associated with tissue damage and inflammation in some febrile infections. To assess whether neutrophils contribute to the pathogenesis observed in severe leptospirosis, we quantitated levels of neutrophil activation markers in patients with varying disease severities. Hospitalized leptospirosis patients had significantly higher levels of toll-like receptors 2 and 4 (TLR2 and TLR4, respectively) on peripheral neutrophils than healthy controls, with the highest levels detected in patients with organ dysfunction. We observed no significant differences in other neutrophil baseline activation markers (CD62L and CD11b) or activation capacity (CD62L and CD11b levels following stimulation), regardless of disease severity. Our results provide preliminary evidence supporting the hypothesis that higher initial bacterial loads or inadequate or delayed neutrophil responses, rather than TLR-driven inflammation, may drive severe disease outcomes.
Collapse
Affiliation(s)
- Janet C. Lindow
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Annie J. Tsay
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Ruth R. Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Eliana A. G. Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Guilherme Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Nivison R. R. Nery
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J. Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Mitermayer G. Reis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| |
Collapse
|
7
|
Zhang H, Zhang B, Zhang X, Wang X, Wu K, Guan Q. Effects of cathelicidin-derived peptide from reptiles on lipopolysaccharide-induced intestinal inflammation in weaned piglets. Vet Immunol Immunopathol 2017; 192:41-53. [PMID: 29042014 DOI: 10.1016/j.vetimm.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Cathelicidins are the largest family of antimicrobial peptides. C-BF, which is short for Cathelicidin-Bungarus Fasciatus, was isolated from snake venom. C-BF was found to be the most potential substitutes for antibiotics. In this study, we analyzed the effects of cathelicidin-derived peptide C-BF, on lipopolysaccharide (LPS)-induced intestinal damage in weaned piglets, to evaluate the therapeutic effect of C-BF on infectious disease of piglets. Twenty-four piglets were randomly assigned into four groups: control, C-BF, LPS, and C-BF+LPS. The LPS and C-BF+LPS groups were intraperitoneally injected with LPS at fixed timepoints, while the control and C-BF groups were injected with equal volumes of saline. The C-BF and C-BF+LPS groups were then intraperitoneally injected with antimicrobial peptide C-BF, while the control and LPS groups were injected with equal volumes of saline. All piglets were observed for 15days and then sacrificed for analysis. The results showed that C-BF significantly improved the growth performance of weaned piglets compared with LPS-treated animals (P<0.05), and that C-BF could ameliorate the structural and developmental damage to the small intestine caused by LPS treatment. Further, the level of apoptosis in the LPS group was significantly higher than in the other three groups (P<0.05), as was the invasion of inflammatory cells into the intestinal mucosa of the jejunum (P<0.05), leading to increased secretion of pro-inflammatory cytokines. In conclusion, the study indicates that C-BF treatment may be a potential therapy for LPS/pathogen-induced intestinal injury in piglets.
Collapse
Affiliation(s)
- Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Bingxi Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Xiaomeng Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Xuemei Wang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Kebang Wu
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| | - Qingfeng Guan
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, Hainan, 570228, People's Republic of China; Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
8
|
Guo Y, Ding C, Zhang B, Xu J, Xun M, Xu J. Inhibitory effect of BMAP-28 on Leptospiral Lipopolysaccharide-Induced TLR2-Dependent Immune Response in Bovine Cells. Jundishapur J Microbiol 2016; 9:e33926. [PMID: 27635213 PMCID: PMC5013549 DOI: 10.5812/jjm.33926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 06/03/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
Background Bovine leptospirosis is a widespread zoonotic disease, leading to serious economic losses in animal production and causing potential hazards to human health. Leptospiral lipopolysaccharide (L-LPS) plays an important role in leptospirosis pathogenicity. Objectives With respect to L-LPS endotoxin-like activity, we examined bovine immune response to L-LPS and the inhibitory ability of bovine myeloid antimicrobial peptide-28 (BMAP-28) against L-LPS-induced immune activation in bovine cells. Materials and Methods In this study, L-LPS-induced proinflammatory cytokine production in bovine cells was quantitatively measured with real-time PCR and ELISA, and we determined which cell membrane receptors (toll-like receptor [TLR]2 and TLR4) played a major role. In addition, the ability of BMAP-28 to inhibit L-LPS-induced endotoxin-like immune activation in bovine cells was determined by the decrease in cytokine secretion. Results L-LPS showed the ability to induce cytokine production in bovine cells, and its induction was TLR2-dependent. BMAP-28 was used to inhibit L-LPS-induced endotoxin-like activity. The function of BMAP-28 was to inhibit LPS-induced TLR2 expression and cytokine production. Conclusions In this study, the L-LPS immune response of bovine cells was significant, indicating that TLR2 is the predominant receptor for L-LPS. Due to L-LPS endotoxin-like activity, we found a strategy through using BMAP-28 to prevent L-LPS-induced TLR2-dependent immune activation in bovine cells.
Collapse
Affiliation(s)
- Yijie Guo
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiao Tong University, Xi'an, China; Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Cuiping Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiao Tong University, Xi'an, China
| | - Bo Zhang
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun Xu
- Faculty of Science and Engineering, Iwate University, Iwate, Japan
| | - Meng Xun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiao Tong University, Xi'an, China
| | - Jiru Xu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
9
|
Guo Y, Fukuda T, Nakamura S, Bai L, Xu J, Kuroda K, Tomioka R, Yoneyama H, Isogai E. Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:273-9. [PMID: 25557825 PMCID: PMC4283174 DOI: 10.5713/ajas.14.0440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/17/2014] [Accepted: 08/29/2014] [Indexed: 11/27/2022]
Abstract
Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation.
Collapse
Affiliation(s)
- Yijie Guo
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan ; Department of Immunobiology and Pathogenic Biology, Medical School of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tomokazu Fukuda
- Laboratory of Animal Breeding and Genetics, Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Shuichi Nakamura
- Laboratory of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Lanlan Bai
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Jun Xu
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kengo Kuroda
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Rintaro Tomioka
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hiroshi Yoneyama
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Emiko Isogai
- Laboratories of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|