1
|
Yang Z, Guo Q, Kong X, Li Y, Li F. Effects of Flavonoids in Fructus Aurantii Immaturus on Carcass Traits, Meat Quality and Antioxidant Capacity in Finishing Pigs. Antioxidants (Basel) 2024; 13:1385. [PMID: 39594527 PMCID: PMC11591327 DOI: 10.3390/antiox13111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This experiment aimed to explore the effects of flavonoids in Fructus Aurantii Immaturus (FFAI) on carcass traits, meat quality, and the antioxidant capacity of finishing pigs. The results indicated that the addition of an appropriate amount of FFAI into their diet could significantly reduce the backfat thickness and perirenal fat percentage of finishing pigs, as well as the drip loss, water-holding capacity, shear force, and the levels of lactate, glucose-6-phosphate, glucose, ATP, phosphofructokinase, and pyruvate in the longissimus dorsi (LD) muscle. It also elevated the levels of flavor amino acids such as glutamate, serine, and threonine, and enriched the composition of flavor substances, including benzene and octanal, which significantly contributed to the enhancement of pork flavor. Furthermore, it enhanced the expression levels of MyHC I and MyHC IIa. In summary, the appropriate addition of FFAI to the diet could improve the carcass traits, meat quality, and antioxidant capacity of finishing pigs. The optimal level of FFAI supplementation is 0.12%.
Collapse
Affiliation(s)
- Zekun Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
| | - Qiuping Guo
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Fengna Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (X.K.)
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ullah H, Khan A, Riccioni C, Di Minno A, Tantipongpiradet A, Buccato DG, De Lellis LF, Khan H, Xiao J, Daglia M. Polyphenols as possible alternative agents in chronic fatigue: a review. PHYTOCHEMISTRY REVIEWS 2023; 22:1637-1661. [DOI: 10.1007/s11101-022-09838-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 01/15/2025]
Abstract
AbstractChronic fatigue syndrome (CFS) is a pathological state of extreme tiredness that lasts more than six months and may possess an impact on the social, emotional, or occupational functioning of an individual. CFS is characterized by profound disabling fatigue associated with infectious, rheumatological, and neurological symptoms. The current pharmacological treatment for CFS does not offer a complete cure for the disease, and none of the available treatments show promising results. The exact mechanism of the pathogenesis of the disease is still unknown, with current suggestions indicating the overlapping roles of the immune system, central nervous system, and neuroendocrine system. However, the pathological mechanism revolves around inflammatory and oxidative stress markers. Polyphenols are the most abundant secondary metabolites of plant origin, with potent antioxidant and anti-inflammatory effects, and can exert protective activity against a whole range of disorders. The current review is aimed at highlighting the emerging role of polyphenols in CFS from both preclinical and clinical studies. Numerous agents of this class have shown promising results in different in vitro and in vivo models of chronic fatigue/CFS, predominantly by counteracting oxidative stress and the inflammatory cascade. The clinical data in this regard is still very limited and needs expanding through randomized, placebo-controlled studies to draw final conclusions on whether polyphenols may be a class of clinically effective nutraceuticals in patients with CFS.
Graphical abstract
Collapse
|
3
|
Yao W, Guo B, Jin T, Bao Z, Wang T, Wen S, Huang F. Garcinol Promotes the Formation of Slow-Twitch Muscle Fibers by Inhibiting p300-Dependent Acetylation of PGC-1α. Int J Mol Sci 2023; 24:ijms24032702. [PMID: 36769025 PMCID: PMC9916769 DOI: 10.3390/ijms24032702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
The conversion of skeletal muscle fiber from fast-twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Dietary garcinol significantly downregulated (p < 0.05) fast myosin heavy chain (MyHC) expression and upregulated (p < 0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (p < 0.05) the activity of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) and markedly decreased (p < 0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (p < 0.05) lactate dehydrogenase activity and increased (p < 0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of C2C12 myotubes showed that garcinol treatment increased (p < 0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (p < 0.05) the expression of fast MyHC but increased (p < 0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (p < 0.05). Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Baoyin Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Taimin Jin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-10-87286912; Fax: +86-10-87280408
| |
Collapse
|
4
|
Camerino C. The Long Way of Oxytocin from the Uterus to the Heart in 70 Years from Its Discovery. Int J Mol Sci 2023; 24:ijms24032556. [PMID: 36768879 PMCID: PMC9916674 DOI: 10.3390/ijms24032556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The research program on oxytocin started in 1895, when Oliver and Schafer reported that a substance extracted from the pituitary gland elevates blood pressure when injected intravenously into dogs. Dale later reported that a neurohypophysial substance triggers uterine contraction, lactation, and antidiuresis. Purification of this pituitary gland extracts revealed that the vasopressor and antidiuretic activity could be attributed to vasopressin, while uterotonic and lactation activity could be attributed to oxytocin. In 1950, the amino-acid sequences of vasopressin and oxytocin were determined and chemically synthesized. Vasopressin (CYFQNCPRG-NH2) and oxytocin (CYIQNCPLG-NH2) differ by two amino acids and have a disulfide bridge between the cysteine residues at position one and six conserved in all vasopressin/oxytocin-type peptides. This characterization of oxytocin led to the Nobel Prize awarded in 1955 to Vincent du Vigneaud. Nevertheless, it was only 50 years later when the evidence that mice depleted of oxytocin or its receptor develop late-onset obesity and metabolic syndrome established that oxytocin regulates energy and metabolism. Oxytocin is anorexigenic and regulates the lean/fat mass composition in skeletal muscle. Oxytocin's effect on muscle is mediated by thermogenesis via a pathway initiated in the myocardium. Oxytocin involvement in thermogenesis and muscle contraction is linked to Prader-Willi syndrome in humans, opening exciting therapeutic avenues.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Wang J, Lu R, Li Y, Lu J, Liang Q, Zheng Z, Huang H, Deng F, Huang H, Jiang H, Hu J, Feng M, Xiao P, Yang X, Liang X, Zeng J. Dietary supplementation with jasmine flower residue improves meat quality and flavor of goat. Front Nutr 2023; 10:1145841. [PMID: 37063323 PMCID: PMC10100067 DOI: 10.3389/fnut.2023.1145841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
Jasmine flower residue (JFR) is a by-product retained in the production process of jasmine tea and can be used as an unconventional feed due to its rich nutrient value. This study aimed to evaluate the effects of the addition of JFR to the diet of goats on their meat quality and flavor. Twenty-four castrated Nubian male goats were randomly divided into two groups and fed a mixed diet containing 10% JFR (JFR, n = 12) or a conventional diet (CON, n = 12) for 45 days. Meat quality and flavor were measured at the end of the treatment. The addition of JFR to the diet could reduce the shear force of the longissimus dorsi muscle, as well as, the cross-sectional area and diameter of muscle fibers, indicating that the addition of JFR improved meat quality. JFR also increased the content of glutamic acid and ω-3 polyunsaturated fatty acid (C18:3n3 and C20:5N3) and reduced the content of C24:1 and saturated fatty acid (C20:0 and C22:0). In addition, the use of JFR increased the content of acetaldehyde and hexanal in the meat. Furthermore, JFR introduced new volatile components in the meat. The umami, saltiness, and richness of the meat also improved. In conclusion, the addition of jasmine flower residue to the diet can improve the meat quality and flavor of goat.
Collapse
Affiliation(s)
- Jinxing Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Renhong Lu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Yehong Li
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Junzhi Lu
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Qiong Liang
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Zihua Zheng
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Heng Huang
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Fuchang Deng
- Guangxi Nongken Yongxin Animal Husbandry Group Nasuo Animal Husbandry Co., Ltd., Nanning, China
| | - Huali Huang
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Huimin Jiang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Junjie Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Ming Feng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Peng Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xingwei Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Jun Zeng
- Institute for New Rural Development, Guangxi University, Nanning, China
- *Correspondence: Jun Zeng,
| |
Collapse
|
6
|
Daneshvar N, Anderson JE. Preliminary Study of S100B and Sema3A Expression Patterns in Regenerating Muscle Implicates P75-Expressing Terminal Schwann Cells and Muscle Satellite Cells in Neuromuscular Junction Restoration. Front Cell Dev Biol 2022; 10:874756. [PMID: 35923848 PMCID: PMC9340223 DOI: 10.3389/fcell.2022.874756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.
Collapse
Affiliation(s)
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Munguía L, Ortiz M, González C, Portilla A, Meaney E, Villarreal F, Nájera N, Ceballos G. Beneficial Effects of Flavonoids on Skeletal Muscle Health: A Systematic Review and Meta-Analysis. J Med Food 2022; 25:465-486. [PMID: 35394826 DOI: 10.1089/jmf.2021.0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle (SkM) is a highly dynamic tissue that responds to physiological adaptations or pathological conditions, and SkM mitochondria play a major role in bioenergetics, regulation of intracellular calcium homeostasis, pro-oxidant/antioxidant balance, and apoptosis. Flavonoids are polyphenolic compounds with the ability to modulate molecular pathways implicated in the development of mitochondrial myopathy. Therefore, it is pertinent to explore its potential application in conditions such as aging, disuse, denervation, diabetes, obesity, and cancer. To evaluate preclinical and clinical effects of flavonoids on SkM structure and function. We performed a systematic review of published studies, with no date restrictions applied, using PubMed and Scopus. The following search terms were used: "flavonoids" OR "flavanols" OR "flavones" OR "anthocyanidins" OR "flavanones" OR "flavan-3-ols" OR "catechins" OR "epicatechin" OR "(-)-epicatechin" AND "skeletal muscle." The studies included in this review were preclinical studies, clinical trials, controlled clinical trials, and randomized-controlled trials that investigated the influence of flavonoids on SkM health. Three authors, independently, assessed trials for the review. Any disagreement was resolved by consensus. The use of flavonoids could be a potential tool for the prevention of muscle loss. Their effects on metabolism and on mitochondria function suggest their use as muscle regulators.
Collapse
Affiliation(s)
- Levy Munguía
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Miguel Ortiz
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Cristian González
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Andrés Portilla
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Eduardo Meaney
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nayelli Nájera
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Guillermo Ceballos
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| |
Collapse
|
8
|
Peña-Torres EF, Castillo-Salas C, Jiménez-Estrada I, Muhlia-Almazán A, Peña-Ramos EA, Pinelli-Saavedra A, Avendaño-Reyes L, Hinojosa-Rodríguez C, Valenzuela-Melendres M, Macias-Cruz U, González-Ríos H. Growth performance, carcass traits, muscle fiber characteristics and skeletal muscle mRNA abundance in hair lambs supplemented with ferulic acid. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:52-69. [PMID: 35174342 PMCID: PMC8819324 DOI: 10.5187/jast.2022.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 01/08/2022] [Indexed: 01/03/2023]
Abstract
Ferulic acid (FA) is a phytochemical with various bioactive properties. It has recently been proposed that due to its phytogenic action it can be used as an alternative growth promoter additive to synthetic compounds. The objective of the present study was to evaluate the growth performance, carcass traits, fiber characterization and skeletal muscle gene expression on hair-lambs supplemented with two doses of FA. Thirty-two male lambs (n = 8 per treatment) were individually housed during a 32 d feeding trial to evaluate the effect of FA (300 and 600 mg d-1) or zilpaterol hydrochloride (ZH; 6 mg d-1) on growth performance, and then slaughtered to evaluate the effects on carcass traits, and muscle fibers morphometry from Longissimus thoracis (LT) and mRNA abundance of β2-adrenergic receptor (β2-AR), MHC-I, MHC-IIX and IGF-I genes. FA increased final weight and average daily gain with respect to non-supplemented animals (p < 0.05). The ZH supplementation increased LT muscle area, with respect to FA doses and control (p < 0.05). Cross-sectional area (CSA) of oxidative fibers was larger with FA doses and ZH (p < 0.05). Feeding ZH increased mRNA abundance for β2-AR compared to FA and control (p < 0.05), and expression of MHC-I was affected by FA doses and ZH (p < 0.05). Overall, FA supplementation of male hair lambs enhanced productive variables due to skeletal muscle hypertrophy caused by MHC-I up-regulation. Results suggest that FA has the potential like a growth promoter in lambs.
Collapse
Affiliation(s)
- Edgar Fernando Peña-Torres
- División de Ciencias de la Salud,
Universidad de Quintana Roo, Quintana Roo 77039, Mexico
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| | - Candelario Castillo-Salas
- Departamento de Ciencias
Agronómicas y Veterinarias, Instituto Tecnológico de
Sonora, Sonora 85000, Mexico
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología,
Biofísica y Neurociencias, Centro de Investigación y Estudios
Avanzados del IPN, San Pedro Zacatenco 07000, Mexico
| | - Adriana Muhlia-Almazán
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| | - Etna Aida Peña-Ramos
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| | | | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas,
Universidad Autónoma de Baja California, Baja
California 21705, Mexico
| | - Cindy Hinojosa-Rodríguez
- Departamento de Fisiología,
Biofísica y Neurociencias, Centro de Investigación y Estudios
Avanzados del IPN, San Pedro Zacatenco 07000, Mexico
| | | | - Ulises Macias-Cruz
- Instituto de Ciencias Agrícolas,
Universidad Autónoma de Baja California, Baja
California 21705, Mexico
| | - Humberto González-Ríos
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| |
Collapse
|
9
|
Valenzuela-Grijalva N, Jiménez-Estrada I, Mariscal-Tovar S, López-García K, Pinelli-Saavedra A, Peña-Ramos EA, Muhlia-Almazán A, Zamorano-García L, Valenzuela-Melendres M, González-Ríos H. Effects of Ferulic Acid Supplementation on Growth Performance, Carcass Traits and Histochemical Characteristics of Muscle Fibers in Finishing Pigs. Animals (Basel) 2021; 11:2455. [PMID: 34438911 PMCID: PMC8388683 DOI: 10.3390/ani11082455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
FA dietary supplementation on the growth performance, carcass traits and histochemical characteristics of the Longissimus thoracis muscle from finishing pigs was investigated. Four hundred and twenty pigs were used in this study, and 105 animals (with five replicate pens and 21 pigs per pen) were assigned to one of four treatments: basal diet (BD) without additives (C-); BD + 10 ppm ractopamine hydrochloride + 0.97% lysine (C+); BD + 25 ppm of FA (FA); and BD + 25 ppm of FA + 0.97% lysine (FA-Lys). Dietary supplementation with FA or ractopamine increased both the average daily gain (14%) and loin muscle area (19%), while fat deposition decreased by 53%, in comparison with C- (p < 0.05). The growth performance of pigs treated with FA was similar to those of ractopamine (p > 0.05). The histochemical analysis showed that FA and C+ treatments induced a shift in muscle fiber types: from fast fibers to intermediate (alkaline ATPase) and from oxidative to glycolytic fibers. Muscle tissues from animals treated with FA or ractopamine had a lower cross-sectional area and a greater number of muscle fibers per area (p < 0.05). Findings regarding growth performance and carcass traits indicate that FA supplementation at 25 ppm without extra-lysine can replace the use of ractopamine as a growth promoter in finishing pigs.
Collapse
Affiliation(s)
- Nidia Valenzuela-Grijalva
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| | - Ismael Jiménez-Estrada
- Centro de Investigación y Estudios Avanzados del IPN, Departamento de Fisiología, Biofísica y Neurociencias, San Pedro Zacatenco, Mexico City 07000, Mexico; (I.J.-E.); (S.M.-T.)
| | - Silvia Mariscal-Tovar
- Centro de Investigación y Estudios Avanzados del IPN, Departamento de Fisiología, Biofísica y Neurociencias, San Pedro Zacatenco, Mexico City 07000, Mexico; (I.J.-E.); (S.M.-T.)
| | - Kenia López-García
- Departamento de Biología Celular y Fisiología, Unidad Periférica Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Chiautempan 90800, Tlaxcala, Mexico;
| | - Araceli Pinelli-Saavedra
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| | - Etna Aida Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| | - Adriana Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| | - Libertad Zamorano-García
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico; (N.V.-G.); (A.P.-S.); (E.A.P.-R.); (A.M.-A.); (L.Z.-G.); (M.V.-M.)
| |
Collapse
|
10
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Chen X, Jia G, Liu G, Zhao H, Huang Z. Effects of apple polyphenols on myofiber-type transformation in longissimus dorsi muscle of finishing pigs. Anim Biotechnol 2020; 32:246-253. [PMID: 32134354 DOI: 10.1080/10495398.2020.1735405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate effects of apple polyphenols (APPs) on myofiber-type transformation in longissimus dorsi muscle of finishing pigs and its mechanism. In this study, 36 healthy castrated Duroc × Landrace × Yorkshire pigs with an average body weight of 71.25 ± 2.40 kg were randomly divided into three treatment groups (control, 0.04% APPs, 0.08% APPs). The experiment lasted for 49 days. Results showed that dietary APP supplementation increased the protein expression of MyHC I and the activities of succinic dehydrogenase and malate dehydrogenase, as well as decreased the protein expression of MyHC IIb and the activity of lactate dehydrogenase, suggesting that APPs promoted muscle fiber-type transformation from fast-twitch to slow-twitch in finishing pigs. We also showed that dietary 0.08% APP supplementation increased the expressions of mitochondrial biogenesis and function-related proteins PGC-1α, Sirt1 and Cytc. In addition, dietary supplementation with 0.08% APPs increased the activities of T-SOD, GSH-PX and CAT and decreased the MDA content. Together, we provided the first evidence that APP promotes muscle fiber-type transformation from fast-twitch to slow-twitch in finishing pigs, which may be achieved by improving the mitochondrial biogenesis and function and increasing the antioxidant capacity of skeletal muscle.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
12
|
Xu X, Chen X, Chen D, Yu B, Yin J, Huang Z. Effects of dietary apple polyphenol supplementation on carcass traits, meat quality, muscle amino acid and fatty acid composition in finishing pigs. Food Funct 2019; 10:7426-7434. [PMID: 31660546 DOI: 10.1039/c9fo01304k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As health awareness is increasing, consumers have changed their focus with a desire to purchase safer, healthier, and higher quality and nutritional value meat. The aim of this study was to investigate whether dietary apple polyphenol (APP) supplementation in finishing pigs could provide pork with high quality and nutritional value. In the present study, 36 castrated Duroc × Landrace × Yorkshire pigs with an average body weight of 71.25 ± 2.40 kg were randomly divided into three treatments and fed with a basal diet supplemented with 0, 400, or 800 mg kg-1 APPs for 7 weeks. The results showed that dietary 800 mg kg-1 APP supplementation not only decreased backfat thickness and abdominal adipose tissue index but also decreased L* (lightness) and b* (yellowness) in the longissimus dorsi (LD) muscle. The LD muscle crude protein content, the proportions of essential amino acids, flavor amino acids, and total amino acids, as well as the amino acid transporter (SLC7A1, SLC7A2, SLC7A7, SLC1A2) mRNA levels were increased by 800 mg kg-1 APPs. The proportions of docosahexaenoic acid and n-3 polyunsaturated fatty acid (PUFA) and the ratio of PUFA to saturated fatty acid in LD muscle were increased by 400 mg kg-1 APPs. Meanwhile, dietary 400 mg kg-1 and 800 mg kg-1 APP supplementation decreased the contents of blood urea nitrogen and total cholesterol, as well as increased the content of inosinic acid in LD muscle. In conclusion, these results suggested that dietary 800 mg kg-1 APP supplementation improved the carcass traits, meat color, and meat flavor in finishing pigs. These results also suggested that dietary 400 mg kg-1 and 800 mg kg-1 APP supplementation improved the meat nutritional value in finishing pigs. The present study provides effective evidence for the application of APP supplementation for healthy high-quality and nutritional value pork production.
Collapse
Affiliation(s)
- Xiaojiao Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| |
Collapse
|
13
|
Wu L, Ran L, Lang H, Zhou M, Yu L, Yi L, Zhu J, Liu L, Mi M. Myricetin improves endurance capacity by inducing muscle fiber type conversion via miR-499. Nutr Metab (Lond) 2019; 16:27. [PMID: 31073320 PMCID: PMC6498703 DOI: 10.1186/s12986-019-0353-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background Reprogramming of fast-to-slow myofiber switch can improve endurance capacity and alleviate fatigue. Accumulating evidence suggests that a muscle-specific microRNA, miR-499 plays a crucial role in myofiber type transition. In this study, we assessed the effects of natural flavonoid myricetin on exercise endurance and muscle fiber constitution, and further investigated the underlying mechanism of myricetin in vivo and in vitro. Methods A total of 66 six-week-old male Sprague Dawley rats were divided into non-exercise or exercise groups with/without orally administered myricetin (50 or 150 mg/kg) for 2 or 4 weeks. Time-to-exhaustion, blood biochemical parameters, muscle fiber type proportion, the expression of muscle type decision related genes were measured. Mimic/ inhibitor of miR-499 were transfected into cultured L6 myotubes, the expressions of muscle type decision related genes and mitochondrial respiration capacity were investigated. Results Myricetin treatment significantly improved the time-to-exhaustion in trained rats. The enhancement of endurance capacity was associated with an increase of the proportion of slow-twitch myofiber in both soleus and gastrocnemius muscles. Importantly, myricetin treatment amplified the expression of miR-499 and suppressed the expression of Sox6, the down-stream target gene of miR-499, both in vivo and in vitro. Furthermore, inhibition of miR-499 overturned the effects of myricetin on down-regulating Sox6. Conclusions Myricetin promoted the reprogramming of fast-to-slow muscle fiber type switch and reinforced the exercise endurance capacity. The precise mechanisms responsible for the effects of myricetin are not resolved but likely involve regulating miR-499/Sox6 axis.
Collapse
Affiliation(s)
- Luting Wu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Ran
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hedong Lang
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Min Zhou
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Yu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Long Yi
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jundong Zhu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Liu
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mantian Mi
- Research Center for Nutrition and Food safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Komiya Y, Nakamura T, Ishii M, Shimizu K, Hiraki E, Kawabata F, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Increase in muscle endurance in mice by dietary Yamabushitake mushroom (Hericium erinaceus) possibly via activation of PPARδ. Anim Sci J 2019; 90:781-789. [PMID: 30938015 PMCID: PMC6594082 DOI: 10.1111/asj.13199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Skeletal muscle fiber is largely classified into two types: type 1 (slow‐twitch) and type 2 (fast‐twitch) fibers. Meat quality and composition of fiber types are thought to be closely related. Previous research showed that overexpression of constitutively active peroxisome proliferator‐activated receptor (PPAR)δ, a nuclear receptor present in skeletal muscle, increased type 1 fibers in mice. In this study, we found that hexane extracts of Yamabushitake mushroom (Hericium erinaceus) showed PPARδ agonistic activity in vitro. Eight‐week‐old C57BL/6J mice were fed a diet supplemented with 5% (w/w) freeze‐dried Yamabushitake mushroom for 24 hr. After the treatment period, the extensor digitorum longus (EDL) muscles were excised. The Yamabushitake‐supplemented diet up‐regulated the PPARδ target genes Pdk4 and Ucp3 in mouse skeletal muscles in vivo. Furthermore, feeding the Yamabushitake‐supplemented diet to mice for 8 weeks resulted in a significant increase in muscle endurance. These results indicate that Yamabushitake mushroom contains PPARδ agonistic ligands and that dietary intake of Yamabushitake mushroom could activate PPARδ in skeletal muscle of mice. Unexpectedly, we observed no significant alterations in composition of muscle fiber types between the mice fed control and Yamabushitake‐supplemented diets.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshiya Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Momoko Ishii
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kuniyoshi Shimizu
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Eri Hiraki
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Fuminori Kawabata
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Chen X, Guo Y, Jia G, Zhao H, Liu G, Huang Z. Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway. Food Funct 2019; 10:259-265. [DOI: 10.1039/c8fo01902a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferulic acid promotes slow-twitch and inhibits fast-twitch myofiber formation via Sirt1/AMPK.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Yafei Guo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| |
Collapse
|
16
|
Damiot A, Demangel R, Noone J, Chery I, Zahariev A, Normand S, Brioche T, Crampes F, de Glisezinski I, Lefai E, Bareille MP, Chopard A, Drai J, Collin-Chavagnac D, Heer M, Gauquelin-Koch G, Prost M, Simon P, Py G, Blanc S, Simon C, Bergouignan A, O'Gorman DJ. A nutrient cocktail prevents lipid metabolism alterations induced by 20 days of daily steps reduction and fructose overfeeding: result from a randomized study. J Appl Physiol (1985) 2018; 126:88-101. [PMID: 30284519 DOI: 10.1152/japplphysiol.00018.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Physical inactivity and sedentary behaviors are independent risk factors for numerous diseases. We examined the ability of a nutrient cocktail composed of polyphenols, omega-3 fatty acids, vitamin E, and selenium to prevent the expected metabolic alterations induced by physical inactivity and sedentary behaviors. Healthy trained men ( n = 20) (averaging ∼14,000 steps/day and engaged in sports) were randomly divided into a control group (no supplementation) and a cocktail group for a 20-day free-living intervention during which they stopped exercise and decreased their daily steps (averaging ∼3,000 steps/day). During the last 10 days, metabolic changes were further triggered by fructose overfeeding. On days 0, 10, and 20, body composition (dual energy X-ray), blood chemistry, glucose tolerance [oral glucose tolerance test (OGTT)], and substrate oxidation (indirect calorimetry) were measured. OGTT included 1% fructose labeled with (U-13C) fructose to assess liver de novo lipogenesis. Histological changes and related cellular markers were assessed from muscle biopsies collected on days 0 and 20. While the cocktail did not prevent the decrease in insulin sensitivity and its muscular correlates induced by the intervention, it fully prevented the hypertriglyceridemia, the drop in fasting HDL and total fat oxidation, and the increase in de novo lipogenesis. The cocktail further prevented the decrease in the type-IIa muscle fiber cross-sectional area and was associated with lower protein ubiquitination content. The circulating antioxidant capacity was improved by the cocktail following the OGTT. In conclusion, a cocktail of nutrient compounds from dietary origin protects against the alterations in lipid metabolism induced by physical inactivity and fructose overfeeding. NEW & NOTEWORTHY This is the first study to test the efficacy of a novel dietary nutrient cocktail on the metabolic and physiological changes occurring during 20 days of physical inactivity along with fructose overfeeding. The main findings of this study are that 1) reduction in daily steps leads to decreased insulin sensitivity and total fat oxidation, resulting in hyperlipemia and increased de novo lipogenesis and 2) a cocktail supplement prevents the alterations on lipid metabolism.
Collapse
Affiliation(s)
- Anthony Damiot
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Rémi Demangel
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - John Noone
- National Institute for Cellular Biotechnology and School of Health and Human Performance, Dublin City University , Dublin , Ireland
| | - Isabelle Chery
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Alexandre Zahariev
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Sylvie Normand
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France
| | - Thomas Brioche
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - François Crampes
- Institut national de la santé et de la recherche médicale, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases , Toulouse , France.,Paul Sabatier University , Toulouse , France
| | - Isabelle de Glisezinski
- Institut national de la santé et de la recherche médicale, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases and University of Toulouse, Paul Sabatier University and Toulouse University Hospitals, Departments of Clinical Biochemistry and Sports Medicine , Toulouse , France
| | - Etienne Lefai
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France
| | | | - Angèle Chopard
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - Jocelyne Drai
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France.,Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Delphine Collin-Chavagnac
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France.,Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Martina Heer
- Institute of Nutritional and Food Sciences, University of Bonn , Bonn , Germany
| | | | - Michel Prost
- Laboratoire de recherches appliquées Spiral/Kirial International, Couternon, France
| | | | - Guillaume Py
- Université de Montpellier, Institut National de la Recherche Agronomique, UMR866 34060, Dynamique Musculaire et Métabolisme, Montpellier , France
| | - Stéphane Blanc
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France
| | - Chantal Simon
- CARMEN, Centre de Recherche en Nutrition Humaine, Institut national de la santé et de la recherche médicale U1060/University of Lyon 1/INRA U1235 Lyon , France.,Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Audrey Bergouignan
- Université de Strasbourg, Centre national de la recherche scientifique, Institut pluridisciplinaire Hubert Curien UMR 7178, Strasbourg , France.,Anschutz Health and Wellness Center, Anschutz Medical Campus, Aurora, Colorado.,Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Donal J O'Gorman
- National Institute for Cellular Biotechnology and School of Health and Human Performance, Dublin City University , Dublin , Ireland.,3U Diabetes Consortium, Dublin City University , Ireland
| |
Collapse
|
17
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Saneyasu T, Shindo H, Honda K, Kamisoyama H. The Extract of Soybean Protein Increases Slow-Myosin Heavy Chain Expression in C2C12 Myotubes. J Nutr Sci Vitaminol (Tokyo) 2018; 64:296-300. [PMID: 30175795 DOI: 10.3177/jnsv.64.296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Skeletal muscle is composed of four types of fibers in mammals; oxidative slow-twitch type I, oxidative fast-twitch IIA, and glycolytic fast-twitch IIB and IIX/D. In this study using C2C12 myotubes, an extract of soybean protein significantly upregulated mRNA level of myosin heavy chain 7 (Myh7), the predominant isoform expressed in oxidative slow-twitch type I and downregulated mRNA levels of Myh4, the predominant isoform expressed in glycolytic fast-twitch IIB. Similarly, its hydrolysate prepared using digestive enzyme also significantly increased Myh7 expression. In contrast, no significant change was observed in Myh4 mRNA level after the hydrolysate treatment. These findings suggest that dietary intake of the soybean protein extract may increase oxidative slow-twitch fiber in skeletal muscle.
Collapse
Affiliation(s)
| | - Haruka Shindo
- Graduate School of Agricultural Science, Kobe University
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University
| | | |
Collapse
|