1
|
Vyatchin I, Dyachuk V. The unique biology of catch muscles: insights into structure, function, and robotics innovations. Front Bioeng Biotechnol 2025; 13:1478626. [PMID: 40309505 PMCID: PMC12040844 DOI: 10.3389/fbioe.2025.1478626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The Review covers the current state of functions, neurotransmitter innervation, the structure, and development of the contractile apparatus of unique group of catch muscles inherent only to bivalves. In contrast to conventional muscles, during contraction and relaxation, catch muscles possess a unique ability to enter the contraction holding state, referred to as catch state. The latter consists in energy-efficient maintenance of long-lasting tension developed by the muscle without consuming ATP-derived energy and regulated by serotonin and acetylcholine. Despite the molecular mechanism of catch state phenomenon still remains unclear, the combination of experimental data and the resulting assumptions allow one to design new energy-efficient and chemically-driven artificial muscles. The analysis of the structure and function of the catch muscles in this work opens the way to a conceptually new strategy for energy-efficient biomimetic robotics, including underwater robotics.
Collapse
Affiliation(s)
| | - Vyacheslav Dyachuk
- Laboratory of Cell Biophysics, A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Mallett G. The effect of exercise and physical activity on skeletal muscle epigenetics and metabolic adaptations. Eur J Appl Physiol 2025; 125:611-627. [PMID: 39775881 DOI: 10.1007/s00421-025-05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT). As a result, the essential metabolic and regulatory pathways and myogenic genes associated with skeletal muscle alter in response to acute and chronic exercise. Epigenetics is the study of the relationship between genetics and the environment. Exercise evokes signaling pathways that strongly alter myofiber metabolism and skeletal muscle physiological and contractile properties. Epigenetic modifications have recently come to light as essential regulators of exercise adaptations. Research has shown various epigenetic markers linked to PA and exercise. The most critical epigenetic alterations in gene transcription identified are DNA methylation and histone modifications, which are associated with the transcriptional response of skeletal muscle to exercise and facilitate the modification to exercise. Other changes in the epigenetic markers are starting to emerge as essential processes for gene transcription, including acetylation as a new epigenetic modification, mediated changes by methylation, phosphorylation, and micro-RNA (miRNA). This review briefly introduces PA and exercise and associated benefits, provides a summary of epigenetic modifications, and a fundamental review of skeletal muscle physiology. The objectives of this review are 1) to discuss exercise-induced adaptations related to epigenetics and 2) to examine the interaction between exercise metabolism and epigenetics.
Collapse
Affiliation(s)
- Gregg Mallett
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
| |
Collapse
|
3
|
Choi HI, Ryu JS, Noh HY, Jeon YJ, Choi SB, Zeb A, Kim JK. Perindopril erbumine-entrapped ultradeformable liposomes alleviate sarcopenia via effective skin delivery in muscle atrophy mouse model. Int J Pharm 2024; 667:124901. [PMID: 39489388 DOI: 10.1016/j.ijpharm.2024.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Sarcopenia is a pertinent challenge in the super-aged societies causing reduced functional performance, poor quality of life and increased morbidity. In this study, the potential of perindopril erbumine-loaded ultradeformable liposomes (PE-UDLs) against sarcopenia was investigated. PE-UDLs were prepared by thin-film hydration and extrusion method using egg yolk L-α-phosphatidylcholine (EPC) as a lipid bilayer former and Tween 80 or sodium deoxycholate as an edge activator. Owing to the smallest particle size (75.0 nm) and the highest deformability (54.2) and entrapment efficiency (35.7 %), PE-UDLs with EPC to Tween 80 ratio of 8:2 was selected as the optimized formulation. The optimized PE-UDLs showed substantially higher cumulative amount of drug permeated and permeation rate across the rat skin compared to PE solution (485.7 vs. 50.1 µg and 13.4 vs. 2.3 µg/cm2/h, respectively). Topically applied PE-UDLs successfully ameliorated the effects of lipopolysaccharide (LPS)-induced sarcopenia in mice by improving body weight changes, grip strength and muscle weight. Furthermore, PE-UDLs reduced the shrinkage of muscle fibers as demonstrated by higher cross-sectional area than PE solution. PE-UDLs also increased the expression of myosin heavy chain (MHC) protein and reduced the expression of muscle atrophy F-box (Atrogin-1) and muscle ring-finger protein-1 (MuRF1), thereby improving muscles atrophy. In conclusion, these results demonstrate the therapeutic potential of PE-UDLs against sarcopenia.
Collapse
Affiliation(s)
- Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Jeong-Su Ryu
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Yeong-Ju Jeon
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Seong-Beom Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Moraczewska J, Guttman J. Myosins on the Move: A Special Issue on Myosins and Myosin-Dependent Cell Processes. Cytoskeleton (Hoboken) 2024. [PMID: 39499077 DOI: 10.1002/cm.21953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Affiliation(s)
- Joanna Moraczewska
- Faculty of Biological Sciences, Department of Biochemistry and Cell Biology, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Julian Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
5
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
6
|
Serrano N, Hyatt JPK, Houmard JA, Murgia M, Katsanos CS. Muscle fiber phenotype: a culprit of abnormal metabolism and function in skeletal muscle of humans with obesity. Am J Physiol Endocrinol Metab 2023; 325:E723-E733. [PMID: 37877797 PMCID: PMC10864022 DOI: 10.1152/ajpendo.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.
Collapse
Affiliation(s)
- Nathan Serrano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, Arizona, United States
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic-Arizona, Phoenix, Arizona, United States
| |
Collapse
|
7
|
Fan X, Zheng X, An T, Li X, Leung N, Zhu B, Sui T, Shi N, Fan T, Zhao Q. Light diffraction by sarcomeres produces iridescence in transmission in the transparent ghost catfish. Proc Natl Acad Sci U S A 2023; 120:e2219300120. [PMID: 36913569 PMCID: PMC10041080 DOI: 10.1073/pnas.2219300120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 03/15/2023] Open
Abstract
Despite the elaborate varieties of iridescent colors in biological species, most of them are reflective. Here we show the rainbow-like structural colors found in the ghost catfish (Kryptopterus vitreolus), which exist only in transmission. The fish shows flickering iridescence throughout the transparent body. The iridescence originates from the collective diffraction of light after passing through the periodic band structures of the sarcomeres inside the tightly stacked myofibril sheets, and the muscle fibers thus work as transmission gratings. The length of the sarcomeres varies from ~1 μm from the body neutral plane near the skeleton to ~2 μm next to the skin, and the iridescence of a live fish mainly results from the longer sarcomeres. The length of the sarcomere changes by ~80 nm as it relaxes and contracts, and the fish shows a quickly blinking dynamic diffraction pattern as it swims. While similar diffraction colors are also observed in thin slices of muscles from non-transparent species such as the white crucian carps, a transparent skin is required indeed to have such iridescence in live species. The ghost catfish skin is of a plywood structure of collagen fibrils, which allows more than 90% of the incident light to pass directly into the muscles and the diffracted light to exit the body. Our findings could also potentially explain the iridescence in other transparent aquatic species, including the eel larvae (Leptocephalus) and the icefishes (Salangidae).
Collapse
Affiliation(s)
- Xiujun Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xuezhi Zheng
- Department of Electrical Engineering, KU Leuven, LeuvenB3001, Belgium
| | - Tong An
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai201204, China
| | - Nathanael Leung
- School of Mechanical Engineering Sciences, University of Surrey, SurreyGU2 7XH, UK
| | - Bin Zhu
- School of Mechanical Engineering Sciences, University of Surrey, SurreyGU2 7XH, UK
| | - Tan Sui
- School of Mechanical Engineering Sciences, University of Surrey, SurreyGU2 7XH, UK
| | - Nan Shi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Tongxiang Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qibin Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
8
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Morales V, González A, Cabello-Verrugio C. Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:201-218. [PMID: 37093429 DOI: 10.1007/978-3-031-26163-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chronic liver diseases are a group of pathologies affecting the liver with high prevalence worldwide. Among them, cholestatic chronic liver diseases (CCLD) are characterized by alterations in liver function and increased plasma bile acids. Secondary to liver disease, under cholestasis, is developed sarcopenia, a skeletal muscle dysfunction with decreased muscle mass, strength, and physical function. CCL5/RANTES is a chemokine involved in the immune and inflammatory response. Indeed, CCL5 is a myokine because it is produced by skeletal muscle. Several studies show that bile acids induce CCL5/RANTES expression in liver cells. However, it is unknown if the expression of CCL5/RANTES is changed in the skeletal muscle of mice with cholestatic liver disease. We used a murine model of cholestasis-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC diet), in which we detected the mRNA levels for ccl5. We determined that mice fed the DDC diet presented high levels of serum bile acids and developed typical features of sarcopenia. Under these conditions, we detected the ccl5 gene expression in diaphragm muscle showing elevated mRNA levels compared to mice fed with a standard diet (chow diet). Our results collectively suggest an increased ccl5 gene expression in the diaphragm muscle concomitantly with elevated serum bile acids and the development of sarcopenia.
Collapse
Affiliation(s)
- Vania Morales
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea González
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Fu Y, Wu T, Yu H, Xu J, Zhang JZ, Fu DY, Ye H. The Transcription of Flight Energy Metabolism Enzymes Declined with Aging While Enzyme Activity Increased in the Long-Distance Migratory Moth, Spodoptera frugiperda. INSECTS 2022; 13:936. [PMID: 36292884 PMCID: PMC9604208 DOI: 10.3390/insects13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Of all the things that can fly, the flight mechanisms of insects are possibly the least understood. By using RNAseq, we studied the aging-associated gene expression changes in the thorax of Spodoptera frugiperda females. Three possible flight energy metabolism pathways were constructed based on 32 key metabolic enzymes found in S. frugiperda. Differential expression analysis revealed up to 2000 DEGs within old females versus young ones. Expression and GO and KEGG enrichment analyses indicated that most genes and pathways related to energy metabolism and other biological processes, such as transport, redox, longevity and signaling pathway, were downregulated with aging. However, activity assay showed that the activities of all the five tested key enzymes increased with age. The age-associated transcriptional decrease and activity increase in these enzymes suggest that these enzymes are stable. S. frugiperda is a long-distance migrator, and a high activity of enzymes may be important to guarantee a high flight capacity. The activity ratio of GAPDH/HOAD ranged from 0.594 to 0.412, suggesting that lipid is the main fuel of this species, particularly in old individuals. Moreover, the expression of enzymes in the proline oxidation pathway increased with age, suggesting that this energy metabolic pathway also is important for this species or linked to some aging-specific processes. In addition, the expression of immunity- and repair-related genes also increased with age. This study established the overall transcriptome framework of the flight muscle and aging-associated expression change trajectories in an insect for the first time.
Collapse
Affiliation(s)
- Yan Fu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Ting Wu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| |
Collapse
|
11
|
Khalid W, Arshad MS, Aslam N, Majid Noor M, Siddeeg A, Abdul Rahim M, Zubair Khalid M, Ali A, Maqbool Z. Meat myofibril: Chemical composition, sources and its potential for cardiac layers and strong skeleton muscle. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2044847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Noman Aslam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Majid Noor
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | | | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, HN, China
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Shang S, Wu B, Fu B, Jiang P, Liu Y, Qi L, Du M, Dong X. Enzyme treatment-induced tenderization of puffer fish meat and its relation to physicochemical changes of myofibril protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Abstract
Super-relaxation is a state of muscle thick filaments in which ATP turnover by myosin is much slower than that of myosin II in solution. This inhibited state, in equilibrium with a faster (relaxed) state, is ubiquitous and thought to be fundamental to muscle function, acting as a mechanism for switching off energy-consuming myosin motors when they are not being used. The structural basis of super-relaxation is usually taken to be a motif formed by myosin in which the two heads interact with each other and with the proximal tail forming an interacting-heads motif, which switches the heads off. However, recent studies show that even isolated myosin heads can exhibit this slow rate. Here, we review the role of head interactions in creating the super-relaxed state and show how increased numbers of interactions in thick filaments underlie the high levels of super-relaxation found in intact muscle. We suggest how a third, even more inhibited, state of myosin (a hyper-relaxed state) seen in certain species results from additional interactions involving the heads. We speculate on the relationship between animal lifestyle and level of super-relaxation in different species and on the mechanism of formation of the super-relaxed state. We also review how super-relaxed thick filaments are activated and how the super-relaxed state is modulated in healthy and diseased muscles.
Collapse
Affiliation(s)
- Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA
| | | |
Collapse
|
14
|
Doran MH, Lehman W. The Central Role of the F-Actin Surface in Myosin Force Generation. BIOLOGY 2021; 10:1221. [PMID: 34943138 PMCID: PMC8698748 DOI: 10.3390/biology10121221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms.
Collapse
Affiliation(s)
- Matthew H. Doran
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Transcriptome profiling analysis of muscle tissue reveals potential candidate genes affecting water holding capacity in Chinese Simmental beef cattle. Sci Rep 2021; 11:11897. [PMID: 34099805 PMCID: PMC8184995 DOI: 10.1038/s41598-021-91373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
Water holding capacity (WHC) is an important sensory attribute that greatly influences meat quality. However, the molecular mechanism that regulates the beef WHC remains to be elucidated. In this study, the longissimus dorsi (LD) muscles of 49 Chinese Simmental beef cattle were measured for meat quality traits and subjected to RNA sequencing. WHC had significant correlation with 35 kg water loss (r = − 0.99, p < 0.01) and IMF content (r = 0.31, p < 0.05), but not with SF (r = − 0.20, p = 0.18) and pH (r = 0.11, p = 0.44). Eight individuals with the highest WHC (H-WHC) and the lowest WHC (L-WHC) were selected for transcriptome analysis. A total of 865 genes were identified as differentially expressed genes (DEGs) between two groups, of which 633 genes were up-regulated and 232 genes were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that DEGs were significantly enriched in 15 GO terms and 96 pathways. Additionally, based on protein–protein interaction (PPI) network, animal QTL database (QTLdb), and relevant literature, the study not only confirmed seven genes (HSPA12A, HSPA13, PPARγ, MYL2, MYPN, TPI, and ATP2A1) influenced WHC in accordance with previous studies, but also identified ATP2B4, ACTN1, ITGAV, TGFBR1, THBS1, and TEK as the most promising novel candidate genes affecting the WHC. These findings could offer important insight for exploring the molecular mechanism underlying the WHC trait and facilitate the improvement of beef quality.
Collapse
|
16
|
Dunshea F, Ha M, Purslow P, Miller R, Warner R, Vaskoska RS, Wheeler TL, Li X. Meat Tenderness: Underlying Mechanisms, Instrumental Measurement, and Sensory Assessment. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.10489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
17
|
Wu P, Zhang X, Zhang G, Chen F, He M, Zhang T, Wang J, Xie K, Dai G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ 2020; 8:e8950. [PMID: 32328350 PMCID: PMC7166044 DOI: 10.7717/peerj.8950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background The meat quality of yellow feathered broilers is better than the quality of its production. Growth traits are important in the broiler industry. The exploration of regulation mechanisms for the skeletal muscle would help to increase the growth performance of chickens. At present, some progress has been made by researchers, but the molecular mechanisms of the skeletal muscle still remain unclear and need to be improved. Methods In this study, the breast muscles of fast- and slow-growing female Jinghai yellow chickens (F4F, F8F, F4S, F8S) and slow-growing male Jinghai yellow chickens (M4S, M8S) aged four and eight weeks were selected for transcriptome sequencing (RNA-seq). All analyses of differentially expressed genes (DEGs) and functional enrichment were performed. Finally, we selected nine DEGs to verify the accuracy of the sequencing by qPCR. Results The differential gene expression analysis resulted in 364, 219 and 111 DEGs (adjusted P-value ≤ 0.05) for the three comparison groups, F8FvsF4F, F8SvsF4S, and M8SvsM4S, respectively. Three common DEGs (ADAMTS20, ARHGAP19, and Novel00254) were found, and they were all highly expressed at four weeks of age. In addition, some other genes related to growth and development, such as ANXA1, COL1A1, MYH15, TGFB3 and ACTC1, were obtained. The most common DEGs (n = 58) were found between the two comparison groups F8FvsF4F and F8SvsF4S, and they might play important roles in the growth of female chickens. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway also showed some significant enrichment pathways, for instance, extracellular matrix (ECM)-receptor interaction, focal adhesion, cell cycle, and DNA replication. The two pathways that were significantly enriched in the F8FvsF4F group were all contained in that of F8SvsF4S. The same two pathways were ECM–receptor interaction and focal adhesion, and they had great influence on the growth of chickens. However, many differences existed between male and female chickens in regards to common DEGs and KEGG pathways. The results would help to reveal the regulation mechanism of the growth and development of chickens and serve as a guideline to propose an experimental design on gene function with the DEGs and pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
19
|
Ling Y, Zheng Q, Sui M, Zhu L, Xu L, Zhang Y, Liu Y, Fang F, Chu M, Ma Y, Zhang X. Comprehensive Analysis of LncRNA Reveals the Temporal-Specific Module of Goat Skeletal Muscle Development. Int J Mol Sci 2019; 20:ijms20163950. [PMID: 31416143 PMCID: PMC6719106 DOI: 10.3390/ijms20163950] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
A series of complex processes regulate muscle development, and lncRNAs play essential roles in the regulation of skeletal myogenesis. Using RNA sequencing, we profiled the lncRNA expression during goat (Capra hircus) skeletal muscle development, which included seven stages across fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), 135 (F135) days, born for 24 h (B1) and 90 (B90) days. A total of 15,079 lncRNAs were identified in the seven stages, and they were less conservative with other species (human, cow, and mouse). Among them, 547 were differentially expressed, and they divided the seven stages into three functional transition periods. Following weighted gene co-expression network analysis (WGCNA), five lncRNA modules specific for developmental stages were defined as three types: 'Early modules', 'late modules', and 'individual-stage-specific modules'. The enrichment content showed that 'early modules' were related to muscle structure formation, 'late modules' participated in the 'p53 signaling pathway' and other pathways, the F90-highly related module was involved in the 'MAPK signaling pathway', and other pathways. Furthermore, we identified hub-lncRNA in three types of modules, and LNC_011371, LNC_ 007561, and LNC_001728 may play important roles in goat skeletal muscle. These data will facilitate further exploration of skeletal muscle lncRNA functions at different developmental stages in goats.
Collapse
Affiliation(s)
- Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Lina Xu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230036, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuehui Ma
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei 230031, China
| |
Collapse
|
20
|
Ojima K. Myosin: Formation and maintenance of thick filaments. Anim Sci J 2019; 90:801-807. [PMID: 31134719 PMCID: PMC6618170 DOI: 10.1111/asj.13226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Skeletal muscle consists of bundles of myofibers containing millions of myofibrils, each of which is formed of longitudinally aligned sarcomere structures. Sarcomeres are the minimum contractile unit, which mainly consists of four components: Z‐bands, thin filaments, thick filaments, and connectin/titin. The size and shape of the sarcomere component is strictly controlled. Surprisingly, skeletal muscle cells not only synthesize a series of myofibrillar proteins but also regulate the assembly of those proteins into the sarcomere structures. However, authentic sarcomere structures cannot be reconstituted by combining purified myofibrillar proteins in vitro, therefore there must be an elaborate mechanism ensuring the correct formation of myofibril structure in skeletal muscle cells. This review discusses the role of myosin, a main component of the thick filament, in thick filament formation and the dynamics of myosin in skeletal muscle cells. Changes in the number of myofibrils in myofibers can cause muscle hypertrophy or atrophy. Therefore, it is important to understand the fundamental mechanisms by which myofibers control myofibril formation at the molecular level to develop approaches that effectively enhance muscle growth in animals.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| |
Collapse
|