1
|
Kerek Á, Román IL, Szabó Á, Papp M, Bányai K, Kardos G, Kaszab E, Bali K, Makrai L, Jerzsele Á. Comprehensive Metagenomic Analysis of Veterinary Probiotics in Broiler Chickens. Animals (Basel) 2024; 14:1927. [PMID: 38998039 PMCID: PMC11240415 DOI: 10.3390/ani14131927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Probiotics are widely used in broiler chickens to support the gut microbiome, gut health, and to reduce the amount of antibiotics used. Despite their benefits, there is concern over their ability to carry and spread antimicrobial resistance genes (ARGs), posing a significant public health risk. This study utilized next-generation sequencing to investigate ARGs in probiotics approved for poultry, focusing on their potential to be transferred via mobile genetic elements such as plasmids and phages. We examined the gut microbiome and resistome changes in 60 broiler chickens over their rearing period, correlating these changes with different probiotic treatments. Specific resistance mechanisms against critically important antibiotics were identified, including genes related to fluoroquinolone resistance and peptide antibiotic resistance. We also found genes with significant relevance to public health (aadK, AAC(6')-Ii) and multiple drug-resistance genes (vmlR, ykkC, ykkD, msrC, clbA, eatAv). Only one phage-encoded gene (dfrA43) was detected, with no evidence of plasmid or mobile genetic element transmission. Additionally, metagenomic analysis of fecal samples showed no significant changes corresponding to time or diet across groups. Our findings highlight the potential risks associated with the use of probiotics in poultry, particularly regarding the carriage of ARGs. It is crucial to conduct further research into the molecular genetics of probiotics to develop strategies that mitigate the risk of resistance gene transfer in agriculture, ensuring the safe and effective use of probiotics in animal husbandry.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
| | - István László Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
| | - Márton Papp
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Centre for Bioinformatics, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- National Public Health Center, Albert Flórián út 2-6, H-1097 Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - László Makrai
- Autovakcina Kft., Szabadság sgrt. 57, H-1171 Budapest, Hungary;
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
| |
Collapse
|
2
|
Yang H, Ock SA, Lee S, Park MR, Kim S, No J, Oh KB, Wi H, Jung SK, Jo YJ, Lee BR, Lee M, Byun SJ. Mortality, growth, and egg production do not differ between nontransgenic and transgenic female chickens with ubiquitous expression of the 3D8 single chain variable fragment gene. Poult Sci 2023; 102:102802. [PMID: 37307631 PMCID: PMC10276288 DOI: 10.1016/j.psj.2023.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
To date, many transgenic (TG) chicken lines have been developed, but few studies have performed a comparative analysis of their mortality, growth, and egg productivity. Previously, we reported the production of 3D8 scFv TG chickens showing antiviral activity. Here, we performed a biometric characterization of TG offspring female chickens. We selected 40 TG and 40 non-TG offspring female chicks among newly hatched chicks produced via artificial insemination of semen from heterotypic 3D8 scFv males into wild-type female chickens. Serum was collected at 14 wk of age, and serum concentrations of biochemical parameters, cytokines, and sex hormones were analyzed. Mortality and growth were monitored daily from 1 to 34 wk, egg productivity was monitored daily from 20 to 34 wk, and the weekly average values were used for analyses. Some serum parameters and cytokines were significantly different between non-TG and TG offspring female chickens. The levels of phosphorus (PHOS), total protein (TP), albumin (ALB), globulin (GLOB), and alanine aminotransferase (ALT) were significantly higher in non-TG chickens (P < 0.05). The levels of alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT) were significantly higher in TG chickens (P < 0.05). The levels of insulin growth factor-1 (IGF-1), interferon-gamma (INF-γ), interleukin-4 (IL-4), and IL-8 were significantly lower in TG chickens (P < 0.05). Despite these differences, the mortality rates, body weight, egg production rates, and egg weight were not significantly different in the experimental groups of non-TG and TG offspring female chickens (P > 0.05). In conclusion, ubiquitous expression of the 3D8 scFv gene in TG offspring female chickens does not affect some biometric characteristics, including mortality, growth, and egg productivity.
Collapse
Affiliation(s)
- Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Seokho Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Jingu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Hayeon Wi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Yong Jin Jo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Minguk Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea.
| |
Collapse
|
3
|
Jastaniah SDS, Hafsan H, Tseng CJ, Karim YS, Hamza MU, Hameed NM, Al-Zubaidi SH, Almotlaq SSK, Yasin G, Iswanto AH, Dadras M, Chorehi MM. Effects of Dietary Pectin and Lactobacillus salivarius ATCC 11741 on Growth Performance, Immunocompetence, Gut Microbiota, Antioxidant Capacity, and Disease Resistance in Narrow-Clawed Crayfish, Postantacus leptodactylus. AQUACULTURE NUTRITION 2022; 2022:1861761. [PMID: 36860450 PMCID: PMC9973152 DOI: 10.1155/2022/1861761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The present study was conducted to clarify the effects of Lactobacillus salivarius (LS) ATCC 11741 and pectin (PE) on growth performance, digestive enzymes activity, gut microbiota composition, immune parameters, antioxidant defense as well as disease resistance against Aeromonas hydrophila in narrow-clawed crayfish, Postantacus leptodactylus. During 18 weeks trial feeding, 525 narrow-clawed crayfish juvenile (8.07 ± 0.1 g) fed with seven experimental diets including control (basal diet), LS1 (1 × 107 CFU/g), LS2 (1 × 109 CFU/g), PE1 (5 g/kg), PE2 (10 g/kg), LS1PE1 (1 × 107 CFU/g +5 g/kg), and LS2PE2 (1 × 109 CFU/g +10 g/kg). After 18 weeks, growth parameters (final weight, weight gain, and specific growth rate) and feed conversion rate were significantly improved in all treatments (P < 0.05). Besides, diets incorporated with LS1PE1 and LS2PE2 significantly increased the activity of amylase and protease enzymes compared to LS1, LS2, and control groups (P < 0.05). Microbiological analyses revealed that the total heterotrophic bacteria count (TVC) and lactic acid bacteria (LAB) of narrow-clawed crayfish fed diets containing LS1, LS2, LS1PE1, and LS2PE2 were higher than control group. The highest total haemocyte count (THC), large-granular (LGC) and semigranular cells (SGC) count, and hyaline count (HC) was obtained in LS1PE1 (P < 0.05). Similarly, higher immunity activity (lysozyme (LYZ), phenoloxidase (PO), nitroxidesynthetase (NOs), and alkaline phosphatase (AKP)) observed in the LS1PE1 treatment compared to the control group (P < 0.05). The glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity remarkably enhanced in LS1PE1 and LS2PE2, while malondialdehyde (MDA) content reduced in these two treatments. In addition, specimens belonging to LS1, LS2, PE2, LS1PE1, and LS2PE2 groups presented higher resistance against A. hydrophila compared to the control group. In conclusion, feeding narrow-clawed crayfish with synbiotic had higher efficiency on growth parameters, immunocompetence, and disease resistance compared to single consumption of prebiotics and probiotics.
Collapse
Affiliation(s)
| | - Hafsan Hafsan
- Biology Department, Universitas Islam Negeri Alauddin, Indonesia
| | - Cheng-jui Tseng
- Assistant Professor, Rattanakosin International College of Creative Entrepreneurship, Rajamangala University of Technology Rattanakosin, Thailand
| | - Yasir Salam Karim
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | | | | | | | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - A. Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Mahnaz Dadras
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
4
|
Kalia VC, Shim WY, Patel SKS, Gong C, Lee JK. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155300. [PMID: 35447189 DOI: 10.1016/j.scitotenv.2022.155300] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
With a continuously increasing human population is an increasing global demand for food. People in countries with a higher socioeconomic status tend to switch their preferences from grains to meat and high-value foods. Their preference for chicken as a source of protein has grown by 70% over the last three decades. Many studies have shown the role of feed in regulating the animal gut microbiome and its impact on host health. The microbiome absorbs nutrients, digests foods, induces a mucosal immune response, maintains homeostasis, and regulates bioactive metabolites. These metabolic activities are influenced by the microbiota and diet. An imbalance in microbiota affects host physiology and progressively causes disorders and diseases. With the use of antibiotics, a shift from dysbiosis with a higher density of pathogens to homeostasis can occur. However, the progressive use of higher doses of antibiotics proved harmful and resulted in the emergence of multidrug-resistant microbes. As a result, the use of antibiotics as feed additives has been banned. Researchers, regulatory authorities, and managers in the poultry industry have assessed the challenges associated with these restrictions. Research has sought to identify alternatives to antibiotic growth promoters for poultry that do not have any adverse effects. Modulating the host intestinal microbiome by regulating dietary factors is much easier than manipulating host genetics. Research efforts have led to the identification of feed additives, including bacteriocins, immunostimulants, organic acids, phytogenics, prebiotics, probiotics, phytoncides, and bacteriophages. In contrast to focusing on one or more of these alternative bioadditives, an improved feed conversion ratio with enhanced poultry products is possible by employing a combination of feed additives. This article may be helpful in future research towards developing a sustainable poultry industry through the use of the proposed alternatives.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Woo Yong Shim
- Samsung Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Chunjie Gong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
A Novel Approach of Antiviral Drugs Targeting Viral Genomes. Microorganisms 2022; 10:microorganisms10081552. [PMID: 36013970 PMCID: PMC9414836 DOI: 10.3390/microorganisms10081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of viral diseases, which cause morbidity and mortality in animals and humans, are increasing annually worldwide. Vaccines, antiviral drugs, and antibody therapeutics are the most effective tools for combating viral infection. The ongoing coronavirus disease 2019 pandemic, in particular, raises an urgent need for the development of rapid and broad-spectrum therapeutics. Current antiviral drugs and antiviral antibodies, which are mostly specific at protein levels, have encountered difficulties because the rapid evolution of mutant viral strains resulted in drug resistance. Therefore, degrading viral genomes is considered a novel approach for developing antiviral drugs. The current article highlights all potent candidates that exhibit antiviral activity by digesting viral genomes such as RNases, RNA interference, interferon-stimulated genes 20, and CRISPR/Cas systems. Besides that, we introduce a potential single-chain variable fragment (scFv) that presents antiviral activity against various DNA and RNA viruses due to its unique nucleic acid hydrolyzing characteristic, promoting it as a promising candidate for broad-spectrum antiviral therapeutics.
Collapse
|
6
|
Sampath V, Park JH, Ha BD, Han K, Kim IH. Evaluation of Lactobacillus Plantarum Additive on Growth Performance, Excreta Microbiota, Nutrient Digestibility, Gas Emission, and Meat Quality in Ross308-Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- V Sampath
- Dankook University, Republic of Korea
| | - JH Park
- Microsolution Co., Ltd, Republic of Korea
| | - BD Ha
- Microsolution Co., Ltd, Republic of Korea
| | - K Han
- Dankook University, Republic of Korea; Dankook University, Republic of Korea
| | - IH Kim
- Dankook University, Republic of Korea
| |
Collapse
|
7
|
Sureshkumar S, Lee HC, Lee S, Jung SK, Kim D, Oh KB, Yang H, Jo YJ, Lee S, Byun SJ. Preliminary Study to Investigate the Effect of Lactobacillus Reuteri Administration on Growth Performance, Immunological, Gut Microbiome and Intestinal Mucosa of Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2022-1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Sureshkumar
- National Institute of Animal Science, Republic of Korea; Dankook University, Republic of Korea
| | - HC Lee
- National Institute of Animal Science, Republic of Korea
| | - S Lee
- National Institute of Animal Science, Republic of Korea
| | - SK Jung
- National Institute of Animal Science, Republic of Korea
| | - D Kim
- Sungkyunkwan University, Republic of Korea
| | - KB Oh
- National Institute of Animal Science, Republic of Korea
| | - H Yang
- National Institute of Animal Science, Republic of Korea
| | - YJ Jo
- National Institute of Animal Science, Republic of Korea
| | - S Lee
- Sungkyunkwan University, Republic of Korea
| | - SJ Byun
- National Institute of Animal Science, Republic of Korea
| |
Collapse
|
8
|
Sampath V, Koo DH, Lim CB, Kim IH. Supplemental Effect of Lactobacillus Plantarum on the Growth Performance, Nutrient Digestibility, Gas Emission, Excreta Microbiota, and Meat Quality in Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2021-1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - DH Koo
- Dankook University, South Korea
| | - CB Lim
- Dankook University, South Korea
| | - IH Kim
- Dankook University, South Korea
| |
Collapse
|
9
|
Sureshkumar S, Lee HC, Jung SK, Kim D, Oh KB, Yang H, Jo YJ, Lee HS, Lee S, Byun SJ. Inclusion of Lactobacillus salivarius strain revealed a positive effect on improving growth performance, fecal microbiota and immunological responses in chicken. Arch Microbiol 2020; 203:847-853. [PMID: 33068123 DOI: 10.1007/s00203-020-02088-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022]
Abstract
Probiotics are defined as live microorganisms that when administered in an appropriate amount, provide health benefits to the host. This study aimed to evaluate the effect of the oral administration of Lactobacillus salivarius (L. salivarius) on growth performance, immunological responses, fecal microbial flora and intestinal mucosal morphology in chickens. Chickens were fed with 109 colony-forming units (CFUs) of wild-type (WT) L. salivarius or phosphate-buffered saline (PBS) for 5 weeks. Chickens body weight was significantly increased by administration of L. salivarius groups compared than control group. The microbial taxonomy in the small intestine and cecum was identified via the chicken feces sample. A total of 286,331 bacterial species were obtained from the chicken fecal samples in overall experimental group. From these, 145,012 bacterial species were obtained from oral administration of L. salivarius treatment group, while 141,319 bacterial species were obtained from control group. Almost 98% of all 16S rRNA sequences from the chicken fecal sample of the two groups were classified into known phyla. Firmicutes, Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria were highly abundant in both groups. Compared with the control birds, the chickens orally administered L. salivarius showed no significant differences in villus length and crypt length. Serum concentrations of the cytokines IL-8, TNF-α, IFN-γ, and IL-4 were markedly reduced in the L. salivarius group. In summary, our findings reveal that L. salivarius can act as a potential probiotic to improve performance and overall gut health in of chickens.
Collapse
Affiliation(s)
- Shanmugam Sureshkumar
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Hwi Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
| | - Dongjun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
| | - Yong Jin Jo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
| | - Hae Sun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706, Republic of Korea.
| |
Collapse
|
10
|
Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals (Basel) 2020; 10:ani10101863. [PMID: 33066185 PMCID: PMC7602066 DOI: 10.3390/ani10101863] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Probiotics are live bacteria, fungi, or yeasts that supplement the gastrointestinal flora and help to maintain a healthy digestive system, thereby promoting the growth performance and overall health of poultry. Probiotics are increasingly being included in poultry diets as an alternative to antibiotics. This systematic review provides a summary of the use of probiotics in poultry production and the potential role of probiotics in the nutrient utilization, growth and laying performance, and gut health of poultry. Abstract Probiotics are live microorganisms which, when administered in adequate amounts, confer health benefits to the host. The use of probiotics in poultry has increased steadily over the years due to higher demand for antibiotic-free poultry. The objective of this systematic review is to present and evaluate the effects of probiotics on the nutrient utilization, growth and laying performance, gut histomorphology, immunity, and gut microbiota of poultry. An electronic search was conducted using relevant keywords to include papers pertinent to the topic. Seventeen commonly used probiotic species were critically assessed for their roles in the performance and gut health of poultry under existing commercial production conditions. The results showed that probiotic supplementation could have the following effects: (1) modification of the intestinal microbiota, (2) stimulation of the immune system, (3) reduction in inflammatory reactions, (4) prevention of pathogen colonization, (5) enhancement of growth performance, (6) alteration of the ileal digestibility and total tract apparent digestibility coefficient, and (7) decrease in ammonia and urea excretion. Thus, probiotics can serve as a potential alternative to antibiotic growth promoters in poultry production. However, factors such as the intestinal health condition of birds, the probiotic inclusion level; and the incubation conditions, feedstuff, and water quality offered to birds may affect the outcome. This systematic review provides a summary of the use of probiotics in poultry production, as well as the potential role of probiotics in the nutrient utilization, growth and laying performance, and gut health of poultry.
Collapse
|