1
|
Maalaoui A, Trimeche A, Marnet PG. Alternative approaches to antibiotics in the control of mastitis in dairy cows: a review. Vet Res Commun 2025; 49:150. [PMID: 40126814 DOI: 10.1007/s11259-025-10720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/15/2025] [Indexed: 03/26/2025]
Abstract
Bovine mastitis is the most widespread and economically burdensome condition affecting dairy herds worldwide, causing substantial financial losses in the livestock and dairy sectors. The main approach to treating mastitis in dairy cows is based on the administration of antibiotics. However, their widespread use has led to the emergence of antibiotic-resistant pathogens, and thus to numerous food safety problems. Consequently, a growing body of scientific research has been directed towards exploring new and effective therapeutic alternatives for the management of bovine mastitis, which could replace conventional antibiotic therapy. This review surveys the various alternative strategies employed in the prevention and treatment of mastitis in dairy cattle. These strategies include nanoparticle therapy, bacteriophage therapy, vaccination, phytotherapy, the use of animal proteins, probiotics and bacteriocins. In addition, the potential synergistic effects resulting from the combination of these treatments has shown real benefits that will be highlighted.
Collapse
Affiliation(s)
- Abir Maalaoui
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, 9000, Tunisia.
- Laboratoire de recherche gestion de la santé et de la qualité des productions animales, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de La Manouba, Ariana, 2020, Tunisia.
| | - Abdesselem Trimeche
- Laboratoire de recherche gestion de la santé et de la qualité des productions animales, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de La Manouba, Ariana, 2020, Tunisia
| | - Pierre Guy Marnet
- Département Productions animales, agroalimentaire, nutrition, service des sciences et productions animales, Institut Agro Rennes-Angers, 65 rue de St Brieuc, Rennes, 35000, France
- Laboratoire SELMET (Systèmes d'élevage méditerranéens et tropicaux), CIRAD/Inrae/Institut Agro, Campus international de Baillarguet, Montpellier Cedex 5, 34398, France
| |
Collapse
|
2
|
McGill JL, Loving CL, Kehrli ME. Future of Immune Modulation in Animal Agriculture. Annu Rev Anim Biosci 2025; 13:255-275. [PMID: 39159206 DOI: 10.1146/annurev-animal-111523-102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Immune modulation in animal agriculture has been of research interest for several decades, yet only a few immunomodulators have received regulatory approval in the United States and around the world. In this review, we summarize market and regulatory environments impacting commercial development of immunomodulators for use in livestock and poultry. In the United States, very few immunomodulators have received regulatory approval for use in livestock by either the US Department of Agriculture Center for Veterinary Biologics or the Food and Drug Administration (FDA). To date, only one immunomodulator has received FDA approval, and an extensive body of peer-reviewed literature is available regarding the basis for its use and health benefits. We present a more thorough review of the history and impact of this immune restorative. Finally, we discuss the interaction of immunomodulators on health, metabolism, and other factors impacting the future of immune modulation in livestock.
Collapse
Affiliation(s)
- Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Marcus E Kehrli
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA;
| |
Collapse
|
3
|
Wang Z, Ma Z, Tian Z, Jia H, Zhang L, Mao Y, Yang Z, Liu X, Li M. Microbial dysbiosis in the gut–mammary axis as a mechanism for mastitis in dairy cows. INT J DAIRY TECHNOL 2024. [DOI: 10.1111/1471-0307.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Mastitis is a significant and costly disease in dairy cows, reducing milk production and affecting herd health. Recent research highlights the role of gastrointestinal microbial dysbiosis in the development of mastitis. This review focuses on how microbial imbalances in the rumen and intestines can compromise the integrity of the gastrointestinal barriers, allowing harmful bacteria and endotoxins, such as lipopolysaccharide, to enter the bloodstream and reach the mammary gland, triggering inflammation. This process links gastrointestinal health to mammary gland inflammation through the gut–mammary axis. Furthermore, disruptions in glucose metabolism and immune responses are implicated in the progression of mastitis. This review underscores the potential for non‐antibiotic interventions aimed at restoring microbial balance to reduce mastitis incidence, providing new insights into improving dairy cow health and farm productivity. Our findings emphasise the critical need to explore preventive measures targeting the rumen and intestinal microbiota for effective mastitis control.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zheng Ma
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zhichen Tian
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Haoran Jia
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lei Zhang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Yongjiang Mao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zhangping Yang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xu Liu
- College of Veterinary Medicine Northwest A&F University Yangling Shanxi 712100 China
| | - Mingxun Li
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
4
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Saifi F, Jeoboam B, Demory Beckler M, Costin JM. The Association Between Lactational Infective Mastitis and the Microbiome: Development, Onset, and Treatments. Cureus 2024; 16:e62717. [PMID: 39036221 PMCID: PMC11259407 DOI: 10.7759/cureus.62717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Lactational infective mastitis (LIM) was previously thought to occur due to trapped milk causing inadequate milk drainage and consequent infection. However, advances in genome sequencing techniques have shown that the abundance of Staphylococcus aureus, Staphylococcus epidermidis, Lactobacilli species, and Bifidobacterium species in the breast milk of lactating women play a key role in the development of LIM. Recent discoveries have revealed that the breast milk microbiome is composed of bacteria and other microorganisms, which are seeded through multiple pathways and are influenced by maternal factors. An imbalance in the microbial abundance in breast milk can lead to LIM. Given that this infection can cause early termination of breastfeeding, it is imperative to discuss prevention and treatment options. The objective of this review is to highlight the pathogens involved in LIM affecting human mothers, routes of bacterial transfer, and contributing factors that may influence changes in the composition of the milk microbiota, as well as propose preventative and curative treatment options.
Collapse
Affiliation(s)
- Farishta Saifi
- Biomedical Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Benscar Jeoboam
- Biomedical Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Joshua M Costin
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
6
|
Touza-Otero L, Landin M, Diaz-Rodriguez P. Fighting antibiotic resistance in the local management of bovine mastitis. Biomed Pharmacother 2024; 170:115967. [PMID: 38043445 DOI: 10.1016/j.biopha.2023.115967] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine mastitis is a widespread infectious disease with a significant economic burden, accounting for 80 % of the antibiotic usage in dairy animals. In recent years, extensive research has focused on using biomimetic approaches such as probiotics, bacteriocins, bacteriophages, or phytochemicals as potential alternatives to antibiotics. The local administration of therapeutic molecules through the intramammary route is one of the most commonly strategies to manage bovine mastitis. This review highlights the most important findings in this field and discusses their local application in mastitis therapy. In contrast to antibiotics, the proposed alternatives are not limited to promote bacterial death but consider other factors associated to the host microenvironments. To this end, the proposed biomimetic strategies can modulate different stages of infection by modifying the local microbiota, preventing oxidative stress, reducing bacterial adhesion to epithelial cells, modulating the immune response, or mediating the inflammatory process. Numerous in vitro studies support the antimicrobial, antibiofilm or antioxidant properties of these alternatives. However, in vivo studies incorporating these components within pharmaceutical formulations with potential clinical application are limited. The development of secure, stable, and effective drug delivery systems based on the proposed options is necessary to achieve real alternatives to antibiotics in the clinic.
Collapse
Affiliation(s)
- Lara Touza-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Alessandri G, Sangalli E, Facchi M, Fontana F, Mancabelli L, Donofrio G, Ventura M. Metataxonomic analysis of milk microbiota in the bovine subclinical mastitis. FEMS Microbiol Ecol 2023; 99:fiad136. [PMID: 37880979 DOI: 10.1093/femsec/fiad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Subclinical mastitis is one of the most widespread diseases affecting dairy herds with detrimental effects on animal health, milk productivity, and quality. Despite its multifactorial nature, the presence of pathogenic bacteria is regarded one of the main drivers of subclinical mastitis, causing a disruption of the homeostasis of the bovine milk microbial community. However, bovine milk microbiota alterations associated with subclinical mastitis still represents a largely unexplored research area. Therefore, the species-level milk microbiota of a total of 75 milk samples, collected from both healthy and subclinical mastitis-affected cows from two different stables, was deeply profiled through an ITS, rather than a traditional, and less informative, 16S rRNA gene microbial profiling. Surprisingly, the present pilot study not only revealed that subclinical mastitis is characterized by a reduced biodiversity of the bovine milk microbiota, but also that this disease does not induce standard alterations of the milk microbial community across stables. In addition, a flow cytometry-based total bacterial cell enumeration highlighted that subclinical mastitis is accompanied by a significant increment in the number of milk microbial cells. Furthermore, the combination of the metagenomic and flow cytometry approaches allowed to identify different potential microbial marker strictly correlated with subclinical mastitis across stables.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Elena Sangalli
- Department of Medical-Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Mario Facchi
- DVM Bovine Practitioner "Bergamo Veterinari" Group, 24124 Bergamo, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- GenProbio srl, Via Nazario Sauro 3, 43121 Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| |
Collapse
|
8
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
9
|
Coates LC, Durham SD, Storms DH, Magnuson AD, Van Hekken DL, Plumier BM, Finley JW, Fukagawa NK, Tomasula PM, Lemay DG, Picklo MJ, Barile D, Kalscheur KF, Kable ME. Associations among Milk Microbiota, Milk Fatty Acids, Milk Glycans, and Inflammation from Lactating Holstein Cows. Microbiol Spectr 2023; 11:e0402022. [PMID: 37074179 PMCID: PMC10269560 DOI: 10.1128/spectrum.04020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
Milk oligosaccharides (MOs) can be prebiotic and antiadhesive, while fatty acids (MFAs) can be antimicrobial. Both have been associated with milk microbes or mammary gland inflammation in humans. Relationships between these milk components and milk microbes or inflammation have not been determined for cows and could help elucidate a novel approach for the dairy industry to promote desired milk microbial composition for improvement of milk quality and reduction of milk waste. We aimed to determine relationships among milk microbiota, MFAs, MOs, lactose, and somatic cell counts (SCC) from Holstein cows, using our previously published data. Raw milk samples were collected at three time points, ranging from early to late lactation. Data were analyzed using linear mixed-effects modeling and repeated-measures correlation. Unsaturated MFA and short-chain MFA had mostly negative relationships with potentially pathogenic genera, including Corynebacterium, Pseudomonas, and an unknown Enterobacteriaceae genus but numerous positive relationships with symbionts Bifidobacterium and Bacteroides. Conversely, many MOs were positively correlated with potentially pathogenic genera (e.g., Corynebacterium, Enterococcus, and Pseudomonas), and numerous MOs were negatively correlated with the symbiont Bifidobacterium. The neutral, nonfucosylated MO composed of eight hexoses had a positive relationship with SCC, while lactose had a negative relationship with SCC. One interpretation of these trends might be that in milk, MFAs disrupt primarily pathogenic bacterial cells, causing a relative increase in abundance of beneficial microbial taxa, while MOs respond to and act on pathogenic taxa primarily through antiadhesive methods. Further research is needed to confirm the potential mechanisms driving these correlations. IMPORTANCE Bovine milk can harbor microbes that cause mastitis, milk spoilage, and foodborne illness. Fatty acids found in milk can be antimicrobial and milk oligosaccharides can have antiadhesive, prebiotic, and immune-modulatory effects. Relationships among milk microbes, fatty acids, oligosaccharides, and inflammation have been reported for humans. To our knowledge, associations among the milk microbial composition, fatty acids, oligosaccharides, and lactose have not been reported for healthy lactating cows. Identifying these potential relationships in bovine milk will inform future efforts to characterize direct and indirect interactions of the milk components with the milk microbiota. Since many milk components are associated with herd management practices, determining if these milk components impact milk microbes may provide valuable information for dairy cow management and breeding practices aimed at minimizing harmful and spoilage-causing microbes in raw milk.
Collapse
Affiliation(s)
- Laurynne C. Coates
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Sierra D. Durham
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - David H. Storms
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Andrew D. Magnuson
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Diane L. Van Hekken
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Benjamin M. Plumier
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - John W. Finley
- U.S. Department of Agriculture—Agricultural Research Service, George Washington Carver Center, Beltsville, Maryland, USA
| | - Naomi K. Fukagawa
- U.S. Department of Agriculture—Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Peggy M. Tomasula
- U.S. Department of Agriculture—Agricultural Research Service, Dairy and Functional Foods Research, Wyndmoor, Pennsylvania, USA
| | - Danielle G. Lemay
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| | - Matthew J. Picklo
- U.S. Department of Agriculture—Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Daniela Barile
- University of California, Davis, Food Science and Technology, Davis, California, USA
| | - Kenneth F. Kalscheur
- U.S. Department of Agriculture—Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Mary E. Kable
- U.S. Department of Agriculture—Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
10
|
Guo W, Qiu M, Pu Z, Long N, Yang M, Ren K, Ning R, Zhang S, Peng F, Sun F, Dai M. Geraniol-a potential alternative to antibiotics for bovine mastitis treatment without disturbing the host microbial community or causing drug residues and resistance. Front Cell Infect Microbiol 2023; 13:1126409. [PMID: 36875515 PMCID: PMC9978373 DOI: 10.3389/fcimb.2023.1126409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Mastitis is one of the most prevalent diseases of dairy cows. Currently, mastitis treatment in dairy cows is mainly based on antibiotics. However, the use of antibiotics causes adverse effects, including drug resistance, drug residues, host-microbiome destruction, and environmental pollution. The present study sought to investigate the potentiality of geraniol as an alternative to antibiotics for bovine mastitis treatment in dairy cows. Additionally, the effectiveness of treatment, improvement in inflammatory factors, the influence on microbiome, presence of drug residues, and drug resistance induction were compared and analyzed comprehensively.Geraniol showed an equivalent therapeutic rate as antibiotics in the mouse infection model and cows with mastitis. Moreover, geraniol significantly inhibited the pathogenic bacteria and restored the microbial community while increasing the abundance of probiotics in milk. Notably, geraniol did not destroy the gut microbial communities in cows and mice, whereas antibiotics significantly reduced the diversity and destroyed the gut microbial community structure. Additionally, no geraniol residue was detected in milk four days after treatment discontinuation, but, antibiotic residues were detected in milk at the 7th day after drug withdrawal. In vitro experiments revealed that geraniol did not induce drug resistance in the Escherichia coli strain ATCC25922 and Staphylococcus aureus strain ATCC25923 after 150 generations of culturing, while antibiotics induced resistance after 10 generations. These results suggest that geraniol has antibacterial and anti-inflammatory effects similar to antibiotics without affecting the host-microbial community structure or causing drug residues and resistance. Therefore, geraniol can be a potential substitute for antibiotics to treat mastitis or other infectious diseases and be widely used in the dairy industry.
Collapse
Affiliation(s)
- Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhonghui Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ruihong Ning
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| |
Collapse
|
11
|
Kober AKMH, Saha S, Islam MA, Rajoka MSR, Fukuyama K, Aso H, Villena J, Kitazawa H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022; 10:2255. [PMID: 36422325 PMCID: PMC9692641 DOI: 10.3390/microorganisms10112255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing economic and welfare problems in dairy farming worldwide. Because of the predominant bacterial etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resistance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations in the antibiotic therapy. These scenarios have prompted the quest for new preventive options, probiotics being one interesting alternative. This review article sought to provide an overview of the recent advances in the use of probiotics for the prevention and treatment of BM. The cellular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the impact of these interactions in the immune responses to infections are revised. While most research has demonstrated that some probiotics strains can suppress mammary pathogens by competitive exclusion or the production of antimicrobial compounds, recent evidence suggest that other probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor (TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate the expression of negative regulators of TLR signaling in the MG epithelium, regulating the expression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG immunobiology and therefore they can be used as a preventive strategy for the management of BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow milk production.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Aminul Islam
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- The Cattle Museum, Maesawa, Oshu 029-4205, Japan
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
12
|
Zhang J, Li W, Tang Y, Liu X, Zhang H, Zhou Y, Wang Y, Xiao W, Yu Y. Testing Two Somatic Cell Count Cutoff Values for Bovine Subclinical Mastitis Detection Based on Milk Microbiota and Peripheral Blood Leukocyte Transcriptome Profile. Animals (Basel) 2022; 12:ani12131694. [PMID: 35804592 PMCID: PMC9264859 DOI: 10.3390/ani12131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Somatic cell count (SCC) is an important indicator of the health state of bovine udders. However, the exact cut-off value used for differentiating the cows with healthy quarters from the cows with subclinical mastitis remains controversial. Here, we collected composite milk (milk from four udder quarters) and peripheral blood samples from individual cows in two different dairy farms and used 16S rRNA gene sequencing combined with RNA-seq to explore the differences in the milk microbial composition and transcriptome of cows with three different SCC levels (LSCC: <100,000 cells/mL, MSCC: 100,000−200,000 cells/mL, HSCC: >200,000 cells/mL). Results showed that the milk microbial profiles and gene expression profiles of samples derived from cows in the MSCC group were indeed relatively easily discriminated from those from cows in the LSCC group. Discriminative analysis also uncovered some differentially abundant microbiota at the genus level, such as Bifidobacterium and Lachnospiraceae_AC2044_group, which were more abundant in milk samples from cows with SCC below 100,000 cells/mL. As for the transcriptome profiling, 79 differentially expressed genes (DEGs) were found to have the same direction of regulation in two sites, and functional analyses also showed that biological processes involved in inflammatory responses were more active in MSCC and HSCC cows. Overall, these results showed a similarity between the milk microbiota and gene expression profiles of MSCC and HSCC cows, which presented further evidence that 100,000 cells/ml is a more optimal cut-off value than 200,000 cells/mL for intramammary infection detection at the cow level.
Collapse
Affiliation(s)
- Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yueling Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
| | - Wei Xiao
- Beijing Animal Husbandry Station, Beijing 100029, China
- Correspondence: (W.X.); (Y.Y.)
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.L.); (Y.T.); (X.L.); (H.Z.); (Y.Z.); (Y.W.)
- Correspondence: (W.X.); (Y.Y.)
| |
Collapse
|
13
|
Coates LC, Storms D, Finley JW, Fukagawa NK, Lemay DG, Kalscheur KF, Kable ME. A Low-Starch and High-Fiber Diet Intervention Impacts the Microbial Community of Raw Bovine Milk. Curr Dev Nutr 2022; 6:nzac086. [PMID: 35720468 PMCID: PMC9197574 DOI: 10.1093/cdn/nzac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Background A more sustainable dairy cow diet was designed that minimizes use of feed components digestible by monogastric animals by increasing the quantity of forages. Objectives This study determined if feeding lactating cows the more sustainable, low-starch and high-fiber (LSHF) diet was associated with changes in raw milk microbiota composition and somatic cell count (SCC). Methods In a crossover design, 76 lactating Holstein cows were assigned to an LSHF diet or a high-starch and low-fiber (HSLF) diet, similar to common dairy cow diets in the United States, for 10 wk then placed on the opposite diet for 10 wk. The LSHF diet contained greater quantities of forages, beet pulp, and corn distillers' grain, but contained less canola meal and no high-moisture corn compared with the HSLF diet. Raw milk samples were collected from each cow 4-5 d before intervention and 5 wk into each diet treatment. Within 4 d, additional milk samples were collected for measurement of SCC using Fossmatic 7. The microbial community was determined by sequencing the 16S rRNA gene V4-V5 region and analyzing sequences with QIIME2. After quality filtering, 53 cows remained. Results Raw milk microbial communities differed by diet and time. Taxa associated with fiber consumption, such as Lachnospiraceae, Lactobacillus, Bacteroides, and Methanobrevibacter, were enriched with the LSHF diet. Meanwhile, taxa associated with mastitis, such as Pseudomonas, Stenotrophomonas, and Enterobacteriaceae, were enriched with the HSLF diet. Relatedly, an interaction of diet and time was found to impact SCC. Conclusions In raw milk, consumption of an LSHF diet compared with an HSLF diet was associated with changes in abundance of microbes previously associated with fiber consumption, udder health, and milk spoilage. Further research is needed to determine if an LSHF diet indeed leads to lower rates of mastitis and milk spoilage, which could benefit the dairy industry.
Collapse
Affiliation(s)
- Laurynne C Coates
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - David Storms
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - John W Finley
- United States Department of Agriculture, Agricultural Research Service, George Washington Carver Center, Beltsville, MD, USA
| | - Naomi K Fukagawa
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Danielle G Lemay
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Kenneth F Kalscheur
- United States Department of Agriculture, Agricultural Research Service, US Dairy Forage Research Center, Madison, WI, USA
| | - Mary E Kable
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| |
Collapse
|
14
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yao J, Yang L, Xiong B. Consumption of Supplementary Inulin Modulates Milk Microbiota and Metabolites in Dairy Cows with Subclinical Mastitis. Appl Environ Microbiol 2022; 88:e0205921. [PMID: 34936838 PMCID: PMC8942464 DOI: 10.1128/aem.02059-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
The milk microbiota and mediated metabolites directly affect the health of the udder in dairy cows. Inulin, a dietary prebiotic, can modulate the profile of gastrointestinal microbiota. However, whether the inulin intake affects the milk microbial population and metabolites remains unknown. In this study, 40 subclinical mastitis (SCM) cows were randomly divided into 5 groups. Five inulin addition doses, 0, 100, 200, 300, and 400 g/day per cow, based on the same basal diet, were supplemented. The experiments lasted for 8 weeks. The results showed lower relative abundance of mastitis-causing and proinflammation microbes in milk (i.e., Escherichia-Shigella, Pseudomonas, Rhodococcus, Burkholderia-Caballeronia-Paraburkholderia, etc.) and higher abundances of probiotics and commensal bacteria, such as Lactobacillus, Bifidobacterium, etc., in the cows fed 300 g/day inulin compared to that in the control group. Meanwhile, the levels of arachidonic acid proinflammatory mediators (leukotriene E3, 20-carboxy-leukotriene B4, and 12-Oxo-c-LTB3) and phospholipid metabolites were reduced, and the levels of compounds with antibacterial and anti-inflammatory potential (prostaglandin A1, 8-iso-15-keto-prostaglandin E2 [PGE2], etc.) and participating energy metabolism (citric acid, l-carnitine, etc.) were elevated. These data suggested that inulin intake might modulate the microflora and metabolite level in extraintestinal tissue, such as mammary gland, which provided an alternative for the regulation and mitigation of SCM. IMPORTANCE The profile of the microbial community and metabolic activity in milk are the main determinants of udder health status and milk quality. Recent studies have demonstrated that diet could directly modulate the mammary gland microbiome. Inulin is a probiotic dietary fiber which can improve the microbiota population in the gastrointestinal tract. However, whether inulin intake can further regulate the profile of the microbiota and metabolic activities in milk remains unclear. In subclinical mastitic cows, we found that inulin supplementation could reduce the abundance of Escherichia-Shigella, Pseudomonas, Rhodococcus, and Burkholderia-Caballeronia-Paraburkholderia and the levels of (±)12, 13-DiHOME, leukotriene E3 and 20-carboxy-leukotriene B4 etc., while it elevated the abundance of Lactobacillus, Bifidobacterium, and Muribaculaceae, as well as the levels of prostaglandin A1 (PGA1), 8-iso-15-keto-PGE2, benzoic acid, etc. in milk. These data suggest that inulin intake affects the profile of microorganisms and metabolites in milk, which provides an alternative for the regulation of mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Nagahata H, Kine M, Watanabe H, Tanaka A, Takahashi A, Gondaira S, Higuchi H. Somatic cell and innate immune responses in mammary glands of lactating cows to intramammary infusion of Bifidobacterium breve at pre-drying off period. J Vet Med Sci 2021; 83:1845-1851. [PMID: 34645724 PMCID: PMC8762427 DOI: 10.1292/jvms.21-0306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intramammary infusion of Bifidobacterium breve (B. breve)-induced
somatic cell (SC) counts, chemiluminescent response (CL), lactoferrin (LF) concentrations
and mastitis-causing pathogens from quarters with subclinical mastitis were measured to
evaluate innate immune response of mammary glands in dairy cows at 3 to 4 weeks before
drying off. SC counts in 7 quarters of 7 control cows and 5 quarters of 6 cows with
mastitis increased markedly on day 1 and SC values in control cows were significantly
(P<0.05) increased and returned to pre-infusion levels on day 5
after B. breve-infusion. CL values in both groups increased markedly on
day 1 and then decreased after B. breve-infusion; however, CL values in
cows with mastitis did not return to normal levels on day 5 and at postpartum. The CL
values were highly correlated with their SC counts in milk from both groups. LF
concentrations increased toward day 3 after B. breve-infusion and were
higher in cows with mastitis. B. breve-infusion eliminated 16.6% (1/6) of
pathogens from 6 quarters with chronic subclinical mastitis. B.
breve-induced SC responses in quarters from 3 cows with mastitis showed
characteristic patterns of recovery, persistent and new infections. B.
breve-induced SC counts in quarters from the cows in the pre-drying off were
lower (25.7–70.6%) than those of the cows in mid-lactation. The intrinsic innate immune
response in cows on pre-drying off may be decreased and appears to be insufficient to
eliminate pathogens from mammary gland in the pre-drying off.
Collapse
Affiliation(s)
- Hajime Nagahata
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Ikoinooka 1-3, Imabari, Ehime 794-8555, Japan
| | - Mari Kine
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midori 582, Ebetsu, Hokkaido 069-8501, Japan
| | - Hisato Watanabe
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midori 582, Ebetsu, Hokkaido 069-8501, Japan
| | - Ai Tanaka
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midori 582, Ebetsu, Hokkaido 069-8501, Japan
| | - Aoi Takahashi
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midori 582, Ebetsu, Hokkaido 069-8501, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midori 582, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Bunkyodai-Midori 582, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
16
|
Nagahata H, Moriyama A, Sawada C, Asai Y, Kokubu C, Gondaira S, Higuchi H. Innate immune response of mammary gland induced by intramammary infusion of Bifidobacterium breve in lactating dairy cows. J Vet Med Sci 2020; 82:1742-1749. [PMID: 33071254 PMCID: PMC7804045 DOI: 10.1292/jvms.20-0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate innate immune responses of mammary glands induced by intramammary infusion of Bifidobacterium breve in dairy
cows. Somatic cell counts in quarters of cows showed a marked increase following B. breve infusion on days 1 and 2. Opsonized-stimulated
chemiluminescence response in quarter milk was significantly (P<0.05) increased by B. breve infusion on days 1 to 3
compared to that of pre-infusion. Lactoferrin concentrations in B. breve-infused quarter milk increased significantly
(P<0.05) on days 2 to 4 and 6 compared to those of pre-infusion. IgG and IgA concentrations in B. breve-infused quarters
significantly (P<0.05) increased on days 2 to 4 for IgG and days 3, 4, 6 and 8 for IgA compared to those of pre-infusion. Interleukin
(IL)-1β and IL-8 mRNA levels in somatic cells from B. breve-infused quarters were significantly (P<0.05) upregulated on day
1 compared to those on days 0 and 14. Conversely, IL-6 mRNA levels in somatic cells from B. breve-infused quarters on days 0, 1 and 14 and
NF-κB mRNA levels on day 0 were significantly (P<0.05) down-regulated compared to those of control. IL-1β, tumor necrosis
factor (TNF)-α and IL-6 concentrations increased on days 1, 3 and 7 after B. breve infusion in quarters. Intramammary infusion of B.
breve (3 × 109 cfu) induces a massive influx of leukocytes and enhances innate immune response in mammary glands. This event may
contribute to the enhancing host defense in the mammary gland.
Collapse
Affiliation(s)
- Hajime Nagahata
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.,Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Ikoinooka 1-3, Imabari, Ehime 794-8555, Japan
| | - Ayumi Moriyama
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Chika Sawada
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yukiko Asai
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Chihiro Kokubu
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|