1
|
Townsend J, Gross N, Peng Z, Peñagaricano F, Yang Z, Ahsan N, Khatib H. The embryonic DPPA3 gene stimulates the expression of pregnancy-related genes in bovine endometrial cells. J Dairy Sci 2025; 108:6471-6487. [PMID: 40222672 DOI: 10.3168/jds.2024-25872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Extracellular vesicles (EV) released by cells contain mRNAs, microRNAs, long noncoding RNAs, lipids, and proteins, playing crucial roles in cell-cell communication. Although full-length mRNA transcripts have been documented in EV secreted by cancer cells, there are no reports on full transcripts secreted by embryos. Our study aimed to identify EV mRNAs in the culture medium of bovine embryos and investigate their roles in embryo-maternal communication. Following the isolation of EV from in vitro fertilization media samples and RNA sequencing, we identified a full mRNA transcript of DPPA3, known to play an essential role in embryo development. To examine the role of DPPA3 in embryo-maternal communication, an in vitro transcribed mRNA of DPPA3 was transfected into bovine endometrial epithelial cells. Transfected and control cells were subsequently analyzed with RNA sequencing and proteomics to assess the effects of DPPA3 on gene expression. A total of 24 genes were found to be upregulated, and 1 gene was downregulated (false discovery rate <0.01) following DPPA3 transfection, many with known functions in pregnancy recognition. Proteomic analysis revealed 28 differentially expressed proteins, with 17 upregulated and 11 downregulated. Two proteins, ISG15 and MX1, overlapped with the differentially expressed mRNAs. To mimic the natural transfer of EV from embryos to endometrial cells, we performed coculture with d-8 blastocysts or supplemented the cells with embryo-conditioned culture medium. DPPA3 presence was detected in endometrial cells exposed to embryo-conditioned medium after just 30 min. Overall, our study highlights the significant role of EV in cell-cell communication through mRNA signaling from the embryo to the mother.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - Nicole Gross
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019; Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706.
| |
Collapse
|
2
|
Sibanda S, Pfukenyi DM, Hang'ombe B, Matope G. Epidemiology of epizootic ulcerative syndrome (EUS) in fish in the main water bodies of the Kavango-Zambezi and Great Limpopo transfrontier conservation areas of Zimbabwe. JOURNAL OF FISH DISEASES 2023; 46:201-213. [PMID: 36504110 DOI: 10.1111/jfd.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A three-year study investigated the epidemiology of epizootic ulcerative syndrome (EUS) in fish from Kavango-Zambezi (KAZA) and Great Limpopo (GL) transfrontier conservation areas of Zimbabwe. A total of 38 sites comprising 27 wild fisheries and 11 aquacultures, from Mashonaland West, Matabeleland North and South, and Midlands were selected. Of the 27 wild fisheries, EUS-positive fish were detected from 9 (33.3%) and none from the 11 aquacultures. No positive cases were detected from Nile tilapia (Oreochromis niloticus) from both aquacultures and wild fisheries. A total of 9.9% (239/2423) fish from the nine positive fisheries had typical EUS lesions, and infection was confirmed in 15 species. Prevalence was significantly higher (p < 0.05) in KAZA (11.5%; 95% CI: 9.6-13.4) compared with GL (8.6%; 95% CI: 7.1-10.1). The most affected were Clarias, followed by Barbus and Oreochromis species. Most cases (>80%) were reported in winter when ambient temperature was low. Further studies are required to determine water parameters associated with EUS outbreaks. These results suggested that the African sharptooth catfish (Clarias gariepinus) could be used potentially as an indicator species for EUS surveillance programmes. Thus, implementation of surveillance and biosecurity programmes that take into consideration the epidemiology of EUS will be beneficial.
Collapse
Affiliation(s)
- Sitokozile Sibanda
- Central Veterinary Laboratory, Harare, Zimbabwe
- Department of Veterinary Pathobiology, Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
| | - Davies M Pfukenyi
- Department of Animal Production and Veterinary Medicine, Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Veterinary Sciences, Faculty of Animal and Veterinary Sciences, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Bernard Hang'ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, Lusaka, Zambia
| | - Gift Matope
- Department of Veterinary Pathobiology, Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
3
|
Li Y, Zhang Y, Jiang G, Wang Y, He C, Zhao X, Liu L, Li L. Case report: novel mutations of NDUFS6 and NHLRC2 genes potentially cause the quick postnatal death of a Chinese Hani minority neonate with mitochondrial complex I deficiency and FINCA syndrome. Medicine (Baltimore) 2022; 101:e29239. [PMID: 35801790 PMCID: PMC9259100 DOI: 10.1097/md.0000000000029239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Mitochondrial complex I deficiency (MCID) and abbFINCA syndrome are lethal congenital diseases and cases in the neonatal period are rarely reported. Here, we identified a Chinese Hani minority neonate with rare MCID and FINCA syndrome. This study was to analyze the clinical manifestations and pathogenic gene variations, and to investigate causes of quick postnatal death of patient and possible molecular pathogenic mechanisms. PATIENT CONCERNS A 17-day-old patient had reduced muscle tension, diminished primitive reflexes, significantly abnormal blood gas analysis, and progressively increased blood lactate and blood glucose. Imaging studies revealed pneumonia, pulmonary hypertension, and brain abnormalities. DIAGNOSIS Whole-exome sequencing revealed that the NDUFS6 gene of the patient carried c. 344G > T (p.C115F) novel homozygous variation, and the NHLRC2 gene carried c. 1749C > G (p.F583L) and c. 2129C > T (p.T710M) novel compound heterozygous variation. INTERVENTIONS AND OUTCOMES The patient was given endotracheal intubation, respiratory support, high-frequency ventilation, antishock therapy, as well as iNO and Alprostadil to reduce pulmonary hypertension and maintain homeostatic equilibrium. However, the patient was critically ill and died in 27 days. CONCLUSION The patient has MCID due to a novel mutation in NDUFS6 and FINCA syndrome due to novel mutations in NHLRC2, which is the main reason for the rapid onset and quick death of the patient.
Collapse
Affiliation(s)
- Yangfang Li
- Department of Neonatology, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Gengpan Jiang
- Department of Neonatology, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Yan Wang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Canlin He
- Department of Neonatology, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Xiaofen Zhao
- Department of Neonatology, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Ling Liu
- Department of Neonatology, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
- *Correspondence: Li Li, Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, Kunming 650228, Yunnan, China (e-mail: )
| |
Collapse
|
4
|
Hiltunen AE, Vuolteenaho R, Ronkainen VP, Miinalainen I, Uusimaa J, Lehtonen S, Hinttala R. Nhlrc2 is crucial during mouse gastrulation. Genesis 2022; 60:e23470. [PMID: 35258166 PMCID: PMC9286871 DOI: 10.1002/dvg.23470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
The loss of NHL repeat containing 2 (Nhlrc2) leads to early embryonic lethality in mice, but the exact timing is currently unknown. In this study, we determined the time of lethality for Nhlrc2 knockout (KO), C57BL/6NCrl‐Nhlrc2tm1a(KOMP)Wtsi/Oulu, embryos and the in situ expression pattern of Nhlrc2 based on LacZ reporter gene expression during this period. Nhlrc2 KO preimplantation mouse embryos developed normally after in vitro fertilization. Embryonic stem (ES) cells established from KO blastocysts proliferated normally despite a complete loss of the NHLRC2 protein. Nhlrc2 KO embryos from timed matings implanted and were indistinguishable from their wildtype littermates on embryonic day (E) 6.5. On E7.5, Nhlrc2 KO embryo development was arrested, and on E8.5, only 6% of the genotyped embryos were homozygous for the Nhlrc2tm1a(KOMP)Wtsi allele. Nhlrc2 KO E8.5 embryos showed limited embryonic or extraembryonic tissue differentiation and remained at the cylinder stage. Nhlrc2 expression was ubiquitous but strongest in the epiblast/ectoderm and extraembryonic ectoderm on E6.5 and E7.5. NHLRC2 is essential for early postimplantation development, and its loss leads to failed gastrulation and amniotic folding in mice. Future studies on the evolutionarily conserved NHLRC2 will provide new insights into the molecular pathways involved in the early steps of postimplantation development.
Collapse
Affiliation(s)
- Anniina E Hiltunen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | | | | | - Johanna Uusimaa
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Clinic for Children and Adolescents, Pediatric Neurology Unit, Oulu University Hospital, Oulu, Finland
| | - Siri Lehtonen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Hiltunen AE, Kangas SM, Ohlmeier S, Pietilä I, Hiltunen J, Tanila H, McKerlie C, Govindan S, Tuominen H, Kaarteenaho R, Hallman M, Uusimaa J, Hinttala R. Variant in NHLRC2 leads to increased hnRNP C2 in developing neurons and the hippocampus of a mouse model of FINCA disease. Mol Med 2020; 26:123. [PMID: 33297935 PMCID: PMC7724728 DOI: 10.1186/s10020-020-00245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background FINCA disease is a pediatric cerebropulmonary disease caused by variants in the NHL repeat-containing 2 (NHLRC2) gene. Neurological symptoms are among the first manifestations of FINCA disease, but the consequences of NHLRC2 deficiency in the central nervous system are currently unexplored. Methods The orthologous mouse gene is essential for development, and its complete loss leads to early embryonic lethality. In the current study, we used CRISPR/Cas9 to generate an Nhlrc2 knockin (KI) mouse line, harboring the FINCA patient missense mutation (c.442G > T, p.Asp148Tyr). A FINCA mouse model, resembling the compound heterozygote genotype of FINCA patients, was obtained by crossing the KI and Nhlrc2 knockout mouse lines. To reveal NHLRC2-interacting proteins in developing neurons, we compared cortical neuronal precursor cells of E13.5 FINCA and wild-type mouse embryos by two-dimensional difference gel electrophoresis. Results Despite the significant decrease in NHLRC2, the mice did not develop severe early onset multiorgan disease in either sex. We discovered 19 altered proteins in FINCA neuronal precursor cells; several of which are involved in vesicular transport pathways and actin dynamics which have been previously reported in other cell types including human to have an association with dysfunctional NHLRC2. Interestingly, isoform C2 of hnRNP C1/C2 was significantly increased in both developing neurons and the hippocampus of adult female FINCA mice, connecting NHLRC2 dysfunction with accumulation of RNA binding protein. Conclusions We describe here the first NHLRC2-deficient mouse model to overcome embryonic lethality, enabling further studies on predisposing and causative mechanisms behind FINCA disease. Our novel findings suggest that disrupted RNA metabolism may contribute to the neurodegeneration observed in FINCA patients.
Collapse
Affiliation(s)
- Anniina E Hiltunen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Salla M Kangas
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Steffen Ohlmeier
- Proteomics Core Facility, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu, 90014, Finland
| | - Ilkka Pietilä
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Jori Hiltunen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, Canada.,Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Subashika Govindan
- Tissue Engineering Laboratory, Hepia/HES-SO, University of Applied Sciences Western Switzerland, Geneva, Switzerland
| | - Hannu Tuominen
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, Respiratory Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu and Unit of Internal Medicine and Respiratory Medicine, Oulu University Hospital, Oulu, Finland
| | - Mikko Hallman
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland
| | - Johanna Uusimaa
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Clinic for Children and Adolescents, Paediatric Neurology Unit, Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Paakkola T, Salokas K, Miinalainen I, Lehtonen S, Manninen A, Kaakinen M, Ruddock LW, Varjosalo M, Kaarteenaho R, Uusimaa J, Hinttala R. Biallelic mutations in human NHLRC2 enhance myofibroblast differentiation in FINCA disease. Hum Mol Genet 2019; 27:4288-4302. [PMID: 30239752 DOI: 10.1093/hmg/ddy298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023] Open
Abstract
The development of tissue fibrosis is complex and at the present time, not fully understood. Fibrosis, neurodegeneration and cerebral angiomatosis (FINCA disease) have been described in patients with mutations in NHL repeat-containing protein 2 (NHLRC2). However, the molecular functions of NHLRC2 are uncharacterized. Herein, we identified putative interacting partners for NHLRC2 using proximity-labeling mass spectrometry. We also investigated the function of NHLRC2 using immortalized cells cultured from skin biopsies of FINCA patients and normal fibroblasts with NHLRC2 knock-down and NHLRC2 overexpressing gene modifications. Transmission electron microscopy analysis of immortalized cell cultures from three FINCA patients demonstrated multilamellar bodies and distinctly organized vimentin filaments. Additionally, two of three cultures derived from patient skin biopsies contained cells that exhibited features characteristic of myofibroblasts. Altogether, the data presented in this study show for the first time that NHLRC2 is involved in cellular organization through regulation of the cytoskeleton and vesicle transport. We conclude that compound heterozygous p.Asp148Tyr and p.Arg201GlyfsTer6 mutations in NHLRC2 lead to severe tissue fibrosis in humans by enhancing the differentiation of fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Teija Paakkola
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, Finland, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland, Helsinki, Finland
| | | | | | - Aki Manninen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Lloyd W Ruddock
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Finland, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland, Helsinki, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Unit of Internal Medicine and Respiratory Medicine, Oulu University Hospital, OYS, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Reetta Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Jackson AE. In this issue - September 2017. Aust Vet J 2017. [DOI: 10.1111/avj.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|