1
|
Han G, Yu J, He J, Zheng P, Mao X, Yu B. Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing-Finishing Pigs. Animals (Basel) 2024; 14:1057. [PMID: 38612296 PMCID: PMC11010921 DOI: 10.3390/ani14071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Kitasamycin (KM), a broad-spectrum macrolide antibiotic, has implications for growth performance and residue in animals and humans. This study aimed to explore the effects of different KM doses on intramuscular fat accumulation, cecal microflora, and short-chain fatty acids (SCFAs) using a growing-finishing pig model. Forty-two pigs were divided into three groups: control, subtherapeutic KM (50 mg/kg, KM50), and therapeutic KM (200 mg/kg, KM200) diets over 8 weeks. KM50 led to increased back fat thickness, fat content in the longissimus dorsi muscle (LM), and elevated plasma total cholesterol (TC) levels (p < 0.05), supported by upregulated lipid synthesis gene expression (Acc1, Fas, Scd1) (p < 0.05) in the LM. KM50 altered cecal microflora, reducing Lactobacillus spp. and Bifidobacterium spp. abundance, while increasing SCFA concentrations (acetic acid, propionic acid, total SCFAs) (p < 0.05). KM200 had minimal effects on intestinal weight and density, with increased apparent digestibility of nutrients. These findings highlight the dose-dependent impact of KM on intramuscular fat deposition. Subtherapeutic KM induced ectopic fat deposition, emphasizing potential risks in disease treatment for humans and animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (G.H.); (J.Y.); (J.H.); (P.Z.)
| |
Collapse
|
2
|
Barth SA, Preussger D, Pietschmann J, Feßler AT, Heller M, Herbst W, Schnee C, Schwarz S, Kloss F, Berens C, Menge C. In Vitro Antibacterial Activity of Microbial Natural Products against Bacterial Pathogens of Veterinary and Zoonotic Relevance. Antibiotics (Basel) 2024; 13:135. [PMID: 38391521 PMCID: PMC10886079 DOI: 10.3390/antibiotics13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to both human and animal health. Efforts to address AMR include implementing antimicrobial stewardship programs and introducing alternative treatment options. Nevertheless, effective treatment of infectious diseases caused by bacteria will still require the identification and development of new antimicrobial agents. Eight different natural products were tested for antimicrobial activity against seven pathogenic bacterial species (Brachyspira sp., Chlamydia sp., Clostridioides sp., Mannheimia sp., Mycobacterium sp., Mycoplasma sp., Pasteurella sp.). In a first pre-screening, most compounds (five out of eight) inhibited bacterial growth only at high concentrations, but three natural products (celastramycin A [CA], closthioamide [CT], maduranic acid [MA]) displayed activity at concentrations <2 µg/mL against Pasteurella sp. and two of them (CA and CT) also against Mannheimia sp. Those results were confirmed by testing a larger collection of isolates encompassing 64 Pasteurella and 56 Mannheimia field isolates originating from pigs or cattle, which yielded MIC90 values of 0.5, 0.5, and 2 µg/mL against Pasteurella and 0.5, 4, and >16 µg/mL against Mannheimia for CA, CT, and MA, respectively. CA, CT, and MA exhibited higher MIC50 and MIC90 values against Pasteurella isolates with a known AMR phenotype against commonly used therapeutic antimicrobial agents than against isolates with unknown AMR profiles. This study demonstrates the importance of whole-cell antibacterial screening of natural products to identify promising scaffolds with broad- or narrow-spectrum antimicrobial activity against important Gram-negative veterinary pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Daniel Preussger
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Jana Pietschmann
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Martin Heller
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, 35392 Giessen, Germany
| | - Christiane Schnee
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, 07745 Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| |
Collapse
|
3
|
Wu JH, Li DL, Tan XH, Chen XW, Liu YL, Munang'andu HM, Peng B. Functional Proteomics Analysis of Norfloxacin-Resistant Edwardsiella tarda. J Proteome Res 2023; 22:3489-3498. [PMID: 37856871 DOI: 10.1021/acs.jproteome.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Multidrug-resistant Edwardsiella tarda threatens both sustainable aquaculture and human health, but the control measure is still lacking. In this study, we adopted functional proteomics to investigate the molecular mechanism underlying norfloxacin (NOR) resistance in E. tarda. We found that E. tarda had a global proteomic shift upon acquisition of NOR resistance, featured with increased expression of siderophore biosynthesis and Fe3+-hydroxamate transport. Thus, either inhibition of siderophore biosynthesis with salicyl-AMS or treatment with another antibiotic, kitasamycin (Kit), which was uptake through Fe3+-hydroxamate transport, enhanced NOR killing of NOR-resistant E. tarda both in vivo and in vitro. Moreover, the combination of NOR, salicyl-AMS, and Kit had the highest efficacy in promoting the killing effects of NOR than any drug alone. Such synergistic effect not only confirmed in vitro and in vivo bacterial killing assays but also applicable to other clinic E. tarda isolates. Thus, our data suggest a proteomic-based approach to identify potential targets to enhance antibiotic killing and propose an alternative way to control infection of multidrug-resistant E. tarda.
Collapse
Affiliation(s)
- Jia-Han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - De-Li Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Hua Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|