1
|
Lapenta C, Santini SM, Antonacci C, Donati S, Cecchetti S, Frittelli P, Catalano P, Urbani F, Macchia I, Spada M, Vitale S, Michelini Z, Corsi DC, Zeuner A, Dattilo R, Tamburo De Bella M. Anti-Tumor Immunity to Patient-Derived Breast Cancer Cells by Vaccination with Interferon-Alpha-Conditioned Dendritic Cells (IFN-DC). Vaccines (Basel) 2024; 12:1058. [PMID: 39340087 PMCID: PMC11435915 DOI: 10.3390/vaccines12091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Breast cancer represents one of the leading causes of death among women. Surgery can be effective, but once breast cancer has metastasized, it becomes extremely difficult to treat. Conventional therapies are associated with substantial toxicity and poor efficacy due to tumor heterogeneity, treatment resistance and disease relapse. Moreover, immune checkpoint blockade appears to offer limited benefit in breast cancer. The poor tumor immunogenicity and the immunosuppressive tumor microenvironment result in scarce T-cell infiltration, leading to a low response rate. Thus, there is considerable interest in the development of improved active immunotherapies capable of sensitizing a patient's immune system against tumor cells. METHODS We evaluated the in vitro anti-tumor activity of a personalized vaccine based on dendritic cells generated in the presence of interferon (IFN)-α and granulocyte-macrophage colony-stimulating factor (IFN-DC) and loaded with an oxidized lysate from autologous tumor cells expanded as 3D organoid culture maintaining faithful tumor antigenic profiles. RESULTS Our findings demonstrate that stimulation of breast cancer patients' lymphocytes with autologous IFN-DC led to efficient Th1-biased response and the generation in vitro of potent cytotoxic activity toward the patients' own tumor cells. CONCLUSIONS This approach can be potentially applied in association with checkpoint blockade and chemotherapy in the design of new combinatorial therapies for breast cancer.
Collapse
Affiliation(s)
- Caterina Lapenta
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Stefano Maria Santini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Celeste Antonacci
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Simona Donati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Patrizia Frittelli
- Medical Oncology Unit, Fatebenefratelli-Isola Tiberina Hospital, 00186 Rome, Italy; (P.F.); (P.C.); (D.C.C.)
| | - Piera Catalano
- Medical Oncology Unit, Fatebenefratelli-Isola Tiberina Hospital, 00186 Rome, Italy; (P.F.); (P.C.); (D.C.C.)
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Sara Vitale
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Domenico Cristiano Corsi
- Medical Oncology Unit, Fatebenefratelli-Isola Tiberina Hospital, 00186 Rome, Italy; (P.F.); (P.C.); (D.C.C.)
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Rosanna Dattilo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.D.); (F.U.); (I.M.); (S.V.); (A.Z.); (R.D.)
| | - Manuela Tamburo De Bella
- Hospital Clinical Networks Governance e DM70/15 Monitoring—AGENAS—National Agency for Regional Health Services, 00187 Rome, Italy;
| |
Collapse
|
2
|
Qian D, Li J, Huang M, Cui Q, Liu X, Sun K. Dendritic cell vaccines in breast cancer: Immune modulation and immunotherapy. Biomed Pharmacother 2023; 162:114685. [PMID: 37058818 DOI: 10.1016/j.biopha.2023.114685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. Although substantial progress has been made in the diagnosis and treatment of breast cancer, the efficacy and side effects of traditional treatment methods are still unsatisfactory. In recent years, immunotherapy including tumor vaccine has achieved great success in the treatment of BC. Dendritic cells (DCs) are multifunctional antigen-presenting cells that play an important role in the initiation and regulation of innate and adaptive immune responses. Numerous studies have shown that DC-based treatments might have a potential effect on BC. Among them, the clinical study of DC vaccine in BC has demonstrated considerable anti-tumor effect, and some DC vaccines have entered the stage of clinical trials. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccine in breast cancer as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China
| | - Jialu Li
- Department of Breast Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China
| | - Mingyao Huang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou 350000, China
| | - Qiuxia Cui
- Department of Breast Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China.
| | - Xiaozhen Liu
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Kailv Sun
- Department of Breast Surgery, Changshu Hospital Affiliated to Soochow University, Changshu 215500, China.
| |
Collapse
|
3
|
Modification of Breast Cancer Milieu with Chemotherapy plus Dendritic Cell Vaccine: An Approach to Select Best Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020238. [PMID: 36830775 PMCID: PMC9953435 DOI: 10.3390/biomedicines11020238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The addition of dendritic cell vaccines (DCV) to NAC could induce immune responses in those patients with residual disease (RD) by transforming the tumor microenvironment. METHODS Core diagnostic biopsies and surgical specimens from 80 patients (38 in the vaccinated group plus NAC (VG) and 42 in the control group (CG, treated only with NAC) were selected. We quantify TILs (CD8, CD4 and CD45RO) using immunohistochemistry and the automated cellular imaging system (ACIS III) in paired samples. RESULTS A CD8 rise in TNBC samples was observed after NAC plus DCV, changing from 4.48% in the biopsy to 6.70% in the surgical specimen, not reaching statistically significant differences (p = 0.11). This enrichment was seen in up to 67% of TNBC patients in the experimental arm as compared with the CG (20%). An association between CD8 TILs before NAC (4% cut-off point) and pathological complete response in the VG was found in the univariate and multivariate analysis (OR = 1.41, IC95% 1.05-1.90; p = 0.02, and OR = 2.0, IC95% 1.05-3.9; p = 0.03, respectively). CONCLUSION Our findings suggest that patients with TNBC could benefit from the stimulation of the antitumor immune system by using DCV together with NAC.
Collapse
|
4
|
Tamariz-Amador LE, Rodríguez-Otero P, Jiménez-Ubieto A, Rosiñol L, Oriol A, Ríos R, Sureda A, Blanchard MJ, Hernández MT, Cabañas Perianes V, Jarque I, Bargay J, Gironella M, De Arriba F, Palomera L, Gonzalez-Montes Y, Martí JM, Krsnik I, Arguiñano JM, González ME, Casado LF, González-Rodriguez AP, López-Anglada L, Puig N, Cedena MT, Paiva B, Mateos MV, San-Miguel J, Lahuerta JJ, Bladé J, Trocóniz IF. Prognostic Value of Serum Paraprotein Response Kinetics in Patients With Newly Diagnosed Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e844-e852. [PMID: 35688793 DOI: 10.1016/j.clml.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Response kinetics is a well-established prognostic marker in acute lymphoblastic leukemia. The situation is not clear in multiple myeloma (MM) despite having a biomarker for response monitoring (monoclonal component [MC]). MATERIALS AND METHODS We developed a mathematical model to assess the prognostic value of serum MC response kinetics during 6 induction cycles, in 373 NDMM transplanted patients treated in the GEM2012Menos65 clinical trial. The model calculated a "resistance" parameter that reflects the stagnation in the response after an initial descent. RESULTS Two patient subgroups were defined based on low and high resistance, that respectively captured sensitive and refractory kinetics, with progression-free survival (PFS) at 5 years of 72% and 59% (HR 0.64, 95% CI 0.44-0.93; P = .02). Resistance significantly correlated with depth of response measured after consolidation (80.9% CR and 68.4% minimal residual disease negativity in patients with sensitive vs. 31% and 20% in those with refractory kinetics). Furthermore, it modulated the impact of reaching CR after consolidation; thus, within CR patients those with refractory kinetics had significantly shorter PFS than those with sensitive kinetics (median 54 months vs. NR; P = .02). Minimal residual disease negativity abrogated this effect. Our study also questions the benefit of rapid responders compared to late responders (5-year PFS 59.7% vs. 76.5%, respectively [P < .002]). Of note, 85% of patients considered as late responders were classified as having sensitive kinetics. CONCLUSION This semi-mechanistic modeling of M-component kinetics could be of great value to identify patients at risk of early treatment failure, who may benefit from early rescue intervention strategies.
Collapse
Affiliation(s)
- Luis-Esteban Tamariz-Amador
- Clínica Universidad de Navarra, CCUN, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain.
| | - Paula Rodríguez-Otero
- Clínica Universidad de Navarra, CCUN, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain.
| | | | - Laura Rosiñol
- Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Albert Oriol
- Institut Català d'Oncologia i Institut Josep Carreras, Badalona, Spain
| | - Rafael Ríos
- Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Anna Sureda
- Institut Català d'Oncologia - Hospital Duran i Reynals, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | - Juan Bargay
- Hospital Son Llatzer, Palma de Mallorca, Spain
| | | | - Felipe De Arriba
- Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | | | - Bruno Paiva
- Clínica Universidad de Navarra, CCUN, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain
| | - Maria-Victoria Mateos
- Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Jesús San-Miguel
- Clínica Universidad de Navarra, CCUN, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBERONC, Pamplona, Spain
| | | | - Joan Bladé
- Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Iñaki F Trocóniz
- Facultad de Farmacia y Nutrición, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Santisteban M, Solans BP, Hato L, Urrizola A, Mejías LD, Salgado E, Sánchez-Bayona R, Toledo E, Rodríguez-Spiteri N, Olartecoechea B, Idoate MA, López-Díaz de Cerio A, Inogés S. Final results regarding the addition of dendritic cell vaccines to neoadjuvant chemotherapy in early HER2-negative breast cancer patients: clinical and translational analysis. Ther Adv Med Oncol 2021; 13:17588359211064653. [PMID: 34987618 PMCID: PMC8721381 DOI: 10.1177/17588359211064653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Primary breast cancer (BC) has shown a higher immune infiltration than the metastatic disease, justifying the optimal scenario for immunotherapy. Recently, neoadjuvant chemotherapy (NAC) combined with immune checkpoint inhibitors has demonstrated a gain in pathological complete responses (tpCR) in patients with BC. The aim of our study is to evaluate the safety, feasibility, and efficacy of the addition of dendritic cell vaccines (DCV) to NAC in HER2-negative BC patients. METHODS Thirty-nine patients with early BC received DCV together with NAC conforming the vaccinated group (VG) and compared with 44 patients as the control group (CG). All patients received anthracyclines and taxanes-based NAC (ddECx4→Dx4) followed by surgery ± radiotherapy ± hormonotherapy. RESULTS The tpCR rate was 28.9% in the VG and 9.09% in the CG (p = 0.03). Pathological CR in the triple negative (TN) BC were 50.0% versus 30.7% (p = 0.25), 16.6% versus 0% in luminal B (p = 0.15), and none among luminal A patients in VG versus CG, respectively. Impact of DCV was significantly higher in the programmed cell death ligand 1 (PD-L1) negative population (p < 0.001). PD-L1 expression was increased in patients with residual disease in the VG as compared with the CG (p < 0.01). No grade ⩾3 vaccine-related adverse events occurred. With a median follow-up of 8 years, no changes were seen in event-free survival or overall survival. Phenotypic changes post DCV in peripheral blood were observed in myeloid-derived suppressor cells (MDSC), NK, and T cells. Increase in blood cell proliferation and interferon (IFN)-γ production was detected in 69% and 74% in the VG, respectively. Humoral response was also found. Clonality changes in TCR-β repertoire were detected in 67% of the patients with a drop in diversity index after treatment. CONCLUSION The combination of DCV plus NAC is safe and increases tpCR, with a significant benefit among PD-L1-negative tumors. DCV modify tumor milieu and perform cellular and humoral responses in peripheral blood with no impact in outcome. TRIAL REGISTRATION ClinicalTrials.gov number: NCT01431196. EudraCT 2009-017402-36.
Collapse
Affiliation(s)
- Marta Santisteban
- Department of Medical Oncology, Clínica Universidad de Navarra, Avda. Pío XII 36, 31008 Pamplona, Spain
- Breast Cancer Unit, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Belén Pérez Solans
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Pharmacometrics and Systems Pharmacology, Universidad de Navarra, Pamplona, Spain
| | - Laura Hato
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Urrizola
- Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis Daniel Mejías
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Esteban Salgado
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Medical Oncology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | | | - Estefanía Toledo
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Preventive Medicine and Public Health, Universidad de Navarra, Pamplona, Spain
| | | | | | | | - Ascensión López-Díaz de Cerio
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Cell Therapy Unit, Clínica Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Universidad de Navarra, Complejo Hospitalario de Navarra and IdisNA, Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Cell Therapy Unit, Clínica Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Universidad de Navarra, Complejo Hospitalario de Navarra and IdisNA, Pamplona, Spain
| |
Collapse
|
6
|
Solans BP, Garrido MJ, Trocóniz IF. Drug Exposure to Establish Pharmacokinetic-Response Relationships in Oncology. Clin Pharmacokinet 2021; 59:123-135. [PMID: 31654368 DOI: 10.1007/s40262-019-00828-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the oncology field, understanding the relationship between the dose administered and the exerted effect is particularly important because of the narrow therapeutic index associated with anti-cancer drugs and the high interpatient variability. Therefore, in this review, we provide a critical perspective of the different methods of characterising treatment exposure in the oncology setting. The increasing number of modelling applications in oncology reflects the applicability and the impact of pharmacometrics on all phases of the drug development process and patient management as well. Pharmacometric modelling is a worthy component within the current paradigm of model-based drug development, but pharmacometric modelling techniques are also accessible for the clinician in the optimisation of current oncology therapies. Consequently, the application of population models in a hospital setting by generating close collaborations between physicians and pharmacometricians is highly recommended, providing a systematic means of developing and assessing model-based metrics as 'drivers' for various responses to treatments, which can then be evaluated as predictors for treatment success. Characterising the key determinants of variability in exposure is of particular importance for anticancer agents, as efficacy and toxicity are associated with exposure. We present the different strategies to describe and predict drug exposure that can be applied depending on the data available, with the objective of obtaining the most useful information in the patients' favour throughout the full drug cycle. Therefore, the objective of the present article is to review the different approaches used to characterise a patient's exposure to oncology drugs, which will result in a better understanding of the time course of the response and the magnitude of interpatient variability.
Collapse
Affiliation(s)
- Belén P Solans
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea s/n, 31008, Pamplona, Navarra, Spain. .,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.
| | - María Jesús Garrido
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea s/n, 31008, Pamplona, Navarra, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Iñaki F Trocóniz
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea s/n, 31008, Pamplona, Navarra, Spain. .,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
8
|
Bruno R, Bottino D, de Alwis DP, Fojo AT, Guedj J, Liu C, Swanson KR, Zheng J, Zheng Y, Jin JY. Progress and Opportunities to Advance Clinical Cancer Therapeutics Using Tumor Dynamic Models. Clin Cancer Res 2019; 26:1787-1795. [PMID: 31871299 DOI: 10.1158/1078-0432.ccr-19-0287] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
There is a need for new approaches and endpoints in oncology drug development, particularly with the advent of immunotherapies and the multiple drug combinations under investigation. Tumor dynamics modeling, a key component to oncology "model-informed drug development," has shown a growing number of applications and a broader adoption by drug developers and regulatory agencies in the past years to support drug development and approval in a variety of ways. Tumor dynamics modeling is also being investigated in personalized cancer therapy approaches. These models and applications are reviewed and discussed, as well as the limitations and issues open for further investigations. A close collaboration between stakeholders like clinical investigators, statisticians, and pharmacometricians is warranted to advance clinical cancer therapeutics.
Collapse
Affiliation(s)
| | - Dean Bottino
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals, Inc. Cambridge, Massachusetts
| | | | | | - Jérémie Guedj
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chao Liu
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | | | | | - Jin Y Jin
- Genentech-Roche, South San Francisco, California
| |
Collapse
|
9
|
Solans BP, López-Díaz de Cerio A, Elizalde A, Pina LJ, Inogés S, Espinós J, Salgado E, Mejías LD, Trocóniz IF, Santisteban M. Assessing the impact of the addition of dendritic cell vaccination to neoadjuvant chemotherapy in breast cancer patients: A model-based characterization approach. Br J Clin Pharmacol 2019; 85:1670-1683. [PMID: 30933365 DOI: 10.1111/bcp.13947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Belén P Solans
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Ascensión López-Díaz de Cerio
- Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.,Cell Therapy Area and Department of Immunology and Inmunotherapy, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Arlette Elizalde
- Department of Radiology, Breast Cancer Unit, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Luis Javier Pina
- Department of Radiology, Breast Cancer Unit, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Susana Inogés
- Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.,Cell Therapy Area and Department of Immunology and Inmunotherapy, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Jaime Espinós
- Department of Medical Oncology, Breast Cancer Unit, Clínica, Universidad de Navarra, Pamplona, Navarra, Spain
| | - Esteban Salgado
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Luis Daniel Mejías
- Department of Pathology, Breast Cancer Unit, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Marta Santisteban
- Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain.,Department of Medical Oncology, Breast Cancer Unit, Clínica, Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
10
|
Fiorentino S, Urueña C, Lasso P, Prieto K, Barreto A. [Effect of miskleron (clofibrate) on dimethylhydrazine induction of intestinal tumors in rats]. Front Oncol 1981; 10:1334. [PMID: 32850424 PMCID: PMC7426739 DOI: 10.3389/fonc.2020.01334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
In this review, we report on the complexity of breast cancer stem cells as key cells in the emergence of a chemoresistant tumor phenotype, and as a result, the appearance of distant metastasis in breast cancer patients. The search for mechanisms that increase sensitivity to chemotherapy and also allow activation of the tumor-specific immune response is of high priority. As we observed throughout this review, natural products isolated or in standardized extracts, such as P2Et or others, could act synergistically, increasing tumor sensitivity to chemotherapy, recovering the tumor microenvironment, and participating in the induction of a specific immune response. This, in turn, would lead to the destruction of cancer stem cells and the decrease in metastasis. Source of Data: Relevant studies were found using the following keywords or medical subject headings (MeSH) in PubMed, and Google Scholar: “immune response” and “polyphenols” and “natural products” and “BCSC” and “therapy” and “metabolism” and “immunogenic cell death.” The focus was primarily on the most recent scientific publication.
Collapse
|