1
|
Standing JF, Buggiotti L, Guerra-Assuncao JA, Woodall M, Ellis S, Agyeman AA, Miller C, Okechukwu M, Kirkpatrick E, Jacobs AI, Williams CA, Roy S, Martin-Bernal LM, Williams R, Smith CM, Sanderson T, Ashford FB, Emmanuel B, Afzal ZM, Shields A, Richter AG, Dorward J, Gbinigie O, Van Hecke O, Lown M, Francis N, Jani B, Richards DB, Rahman NM, Yu LM, Thomas NPB, Hart ND, Evans P, Andersson M, Hayward G, Hood K, Nguyen-Van-Tam JS, Little P, Hobbs FDR, Khoo S, Butler C, Lowe DM, Breuer J. Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients. Nat Commun 2024; 15:1652. [PMID: 38396069 PMCID: PMC10891158 DOI: 10.1038/s41467-024-45641-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Viral clearance, antibody response and the mutagenic effect of molnupiravir has not been elucidated in at-risk populations. Non-hospitalised participants within 5 days of SARS-CoV-2 symptoms randomised to receive molnupiravir (n = 253) or Usual Care (n = 324) were recruited to study viral and antibody dynamics and the effect of molnupiravir on viral whole genome sequence from 1437 viral genomes. Molnupiravir accelerates viral load decline, but virus is detectable by Day 5 in most cases. At Day 14 (9 days post-treatment), molnupiravir is associated with significantly higher viral persistence and significantly lower anti-SARS-CoV-2 spike antibody titres compared to Usual Care. Serial sequencing reveals increased mutagenesis with molnupiravir treatment. Persistence of detectable viral RNA at Day 14 in the molnupiravir group is associated with higher transition mutations following treatment cessation. Viral viability at Day 14 is similar in both groups with post-molnupiravir treated samples cultured up to 9 days post cessation of treatment. The current 5-day molnupiravir course is too short. Longer courses should be tested to reduce the risk of potentially transmissible molnupiravir-mutated variants being generated. Trial registration: ISRCTN30448031.
Collapse
Affiliation(s)
- Joseph F Standing
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | - Laura Buggiotti
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jose Afonso Guerra-Assuncao
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maximillian Woodall
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Samuel Ellis
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Akosua A Agyeman
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charles Miller
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Mercy Okechukwu
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Emily Kirkpatrick
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Amy I Jacobs
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charlotte A Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sunando Roy
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luz M Martin-Bernal
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rachel Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire M Smith
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Fiona B Ashford
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Beena Emmanuel
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zaheer M Afzal
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Adrian Shields
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alex G Richter
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jienchi Dorward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Oghenekome Gbinigie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Oliver Van Hecke
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Mark Lown
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Nick Francis
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bhautesh Jani
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Duncan B Richards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Najib M Rahman
- Respiratory Trials Unit and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ly-Mee Yu
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Nigel D Hart
- School of Medicine, Dentistry and Biomedical Sciences. Queen's University Belfast, Belfast, UK
| | - Philip Evans
- APEx (Exeter Collaboration for Academic Primary Care), University of Exeter Medical School, Exeter, UK
- National Institute of Health and Care Research, Clinical Research Network, University of Leeds, Leeds, UK
| | | | - Gail Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Kerenza Hood
- Centre for Trials Research, Cardiff University, Wales, UK
| | | | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Saye Khoo
- Department of Pharmacology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Christopher Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - David M Lowe
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| |
Collapse
|
3
|
Li H, Kuga K, Ito K. Visual prediction and parameter optimization of viral dynamics in the mucus milieu of the upper airway based on CFPD-HCD analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107622. [PMID: 37257372 DOI: 10.1016/j.cmpb.2023.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Respiratory diseases caused by viruses are a major human health problem. To better control the infection and understand the pathogenesis of these diseases, this paper studied SARS-CoV-2, a novel coronavirus outbreak, as an example. METHODS Based on coupled computational fluid and particle dynamics (CFPD) and host-cell dynamics (HCD) analyses, we studied the viral dynamics in the mucus layer of the human nasal cavity-nasopharynx. To reproduce the effect of mucociliary movement on the diffusive and convective transport of viruses in the mucus layer, a 3D-shell model was constructed using CT data of the upper respiratory tract (URT) of volunteers. Considering the mucus environment, the HCD model was established by coupling the target cell-limited model with the convection-diffusion term. Parameter optimization of the HCD model is the key problem in the simulation. Therefore, this study focused on the parameter optimization of the viral dynamics model, divided the geometric model into multiple compartments, and used Monolix to perform the nonlinear mixed effects (NLME) of pharmacometrics to discuss the influence of factors such as the number of mucus layers, number of compartments, diffusion rate, and mucus flow velocity on the prediction results. RESULTS The findings showed that sufficient experimental data can be used to estimate the corresponding parameters of the HCD model. The optimized convection-diffusion case with a two-layer multi-compartment low-velocity model could accurately predict the viral dynamics. CONCLUSIONS Its visualization process could explain the symptoms of the disease in the nose and contribute to the prevention and targeted treatment of respiratory diseases.
Collapse
Affiliation(s)
- Hanyu Li
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan.
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Japan
| |
Collapse
|