1
|
The Efficacy of Amifostine against Multiple-Dose Doxorubicin-Induced Toxicity in Rats. Int J Mol Sci 2018; 19:ijms19082370. [PMID: 30103540 PMCID: PMC6121234 DOI: 10.3390/ijms19082370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Amifostine is well known cytoprotector which is efficient when administered before a wide range of antineoplastic agents. The aim of our study was to investigate amifostine effects on doxorubicin-induced toxic changes in rats. Amifostine (75 mg/kg ip) was given 30 min before each dose of doxorubicin (cumulatively 20 mg/kg ip, for 28 days). The animals’ whole-body, liver, and kidney weight, serum biochemical examination, as well as microscopic examination of bone marrow, peripheral blood, liver, and kidney, were done on day 56 of the study. Hepatic and renal alterations were carefully quantified by semiquantitative grading scales—hepatic and renal damage score, respectively. In amifostine-pretreated rats, the number of peripheral blood leukocytes was significantly higher in comparison to doxorubicin-only treated group, preferentially protecting neutrophils. In the same group of rats, hepatic and renal alterations associated with polymorphonuclear cell infiltrates were significantly less severe than those observed in animals receiving only doxorubicin. Our results showed that amifostine successfully protected rats against multiple-dose doxorubicin-induced toxicity by complex, and still not fully elucidated mechanisms of action.
Collapse
|
2
|
Danmaigoro A, Selvarajah GT, Mohd Noor MH, Mahmud R, Abu Bakar MZ. Toxicity and Safety Evaluation of Doxorubicin-Loaded Cockleshell-Derived Calcium Carbonate Nanoparticle in Dogs. Adv Pharmacol Sci 2018; 2018:4848602. [PMID: 30079088 PMCID: PMC6035816 DOI: 10.1155/2018/4848602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 04/30/2018] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (DOX) is a potent anticancer agent with cytotoxic effects which limit its clinical usage. This effect is due to its nonselective nature causing injury to the cells as a result of reactive free oxygen radical's release. Cockleshell-derived calcium carbonate nanoparticle (CS-CaCO3NP) is a pH-responsive carrier with targeted delivery potentials. This study aimed at evaluating the toxicity effects of repeated dose administration of DOX-loaded CS-CaCO3NP in healthy dogs. Fifteen dogs with an average body weight of 15 kg were randomized equally into 5 groups. Dogs were subjected to 5 doses at every 3-week interval with (i) normal saline, (ii) DOX, 30 mg/m2, and the experimental groups: CS-CaCO3NP-DOX at (iii) high dose, 50 mg/m2, (iv) clinical dose, 30 mg/m2, and (v) low dose, 20 mg/m2. Radiographs, electrocardiography, and blood samples were collected before every treatment for haematology, serum biochemistry, and cardiac injury assessment. Heart and kidney tissues were harvested after euthanasia for histological and ultrastructural evaluation. The cumulative dose of DOX 150 mg/m2 over 15 weeks revealed significant effects on body weight, blood cells, functional enzymes, and cardiac injury biomarkers with alterations in electrocardiogram, myocardium, and renal tissue morphology. However, the dogs given CS-CaCO3NP-DOX 150 mg/m2 and below did not show any significant change in toxicity biomarker as compared to those given normal saline. The study confirmed the safety of repeated dose administration of CS-CaCO3NP-DOX (30 mg/m2) for 5 cycles in dogs. This finding offers opportunity to dogs with cancer that might require long-term administration of DOX without adverse effects.
Collapse
Affiliation(s)
- Abubakar Danmaigoro
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Rozi Mahmud
- Department of Imaging, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Md Zuki Abu Bakar
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Crouch ML, Knowels G, Stuppard R, Ericson NG, Bielas JH, Marcinek DJ, Syrjala KL. Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects. PLoS One 2017; 12:e0181086. [PMID: 28700655 PMCID: PMC5507312 DOI: 10.1371/journal.pone.0181086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Fatigue is the symptom most commonly reported by long-term cancer survivors and is increasingly recognized as related to skeletal muscle dysfunction. Traditional chemotherapeutic agents can cause acute toxicities including cardiac and skeletal myopathies. To investigate the mechanism by which chemotherapy may lead to persistent skeletal muscle dysfunction, mature adult mice were injected with a single cyclophosphamide dose and evaluated for 6 weeks. We found that exposed mice developed a persistent decrease in treadmill running time compared to baseline (25.7±10.6 vs. 49.0±16.8 min, P = 0.0012). Further, 6 weeks after drug exposure, in vivo parameters of mitochondrial function remained below baseline including maximum ATP production (482.1 ± 48.6 vs. 696.2 ± 76.6, P = 0.029) and phosphocreatine to ATP ratio (3.243 ± 0.1 vs. 3.878 ± 0.1, P = 0.004). Immunoblotting of homogenized muscles from treated animals demonstrated a transient increase in HNE adducts 1 week after exposure that resolved by 6 weeks. However, there was no evidence of an oxidative stress response as measured by quantitation of SOD1, SOD2, and catalase protein levels. Examination of mtDNA demonstrated that the mutation frequency remained comparable between control and treated groups. Interestingly, there was evidence of a transient increase in NF-ĸB p65 protein 1 day after drug exposure as compared to saline controls (0.091±0.017 vs. 0.053±0.022, P = 0.033). These data suggest that continued impairment in muscle and mitochondria function in cyclophosphamide-treated animals is not linked to persistent oxidative stress and that alternative mechanisms need to be considered.
Collapse
Affiliation(s)
- Marie-Laure Crouch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gary Knowels
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rudolph Stuppard
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Nolan G. Ericson
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jason H. Bielas
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - David J. Marcinek
- Department of Radiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Karen L. Syrjala
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Lindsey ML, Lange RA, Parsons H, Andrews T, Aune GJ. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am J Physiol Heart Circ Physiol 2014; 307:H1379-89. [PMID: 25217655 DOI: 10.1152/ajpheart.00099.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the modern era of cancer chemotherapy that began in the mid-1940s, survival rates for children afflicted with cancer have steadily improved from 10% to current rates that approach 80% (60). Unfortunately, many long-term survivors of pediatric cancer develop chemotherapy-related health effects; 25% are afflicted with a severe or life-threatening medical condition, with cardiovascular disease being a primary risk (96). Childhood cancer survivors have markedly elevated incidences of stroke, congestive heart failure (CHF), coronary artery disease, and valvular disease (96). Their cardiac mortality is 8.2 times higher than expected (93). Anthracyclines are a key component of most curative chemotherapeutic regimens used in pediatric cancer, and approximately half of all childhood cancer patients are exposed to them (78). Numerous epidemiologic and observational studies have linked childhood anthracycline exposure to an increased risk of developing cardiomyopathy and CHF, often decades after treatment. The acute toxic effects of anthracyclines on cardiomyocytes are well described; however, myocardial tissue is comprised of additional resident cell types, and events occurring in the cardiomyocyte do not fully explain the pathological processes leading to late cardiomyopathy and CHF. This review will summarize the current literature regarding the cellular and molecular responses to anthracyclines, with an important emphasis on nonmyocyte cardiac cell types as well as those that mediate the myocardial injury response.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, Mississippi Medical Center, Jackson, Mississippi
| | - Richard A Lange
- Division of Cardiology, Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Helen Parsons
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Thomas Andrews
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Gregory J Aune
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|