1
|
Sung I, Lee S, Bang D, Yi J, Lee S, Kim S. MDTR: a knowledge-guided interpretable representation for quantifying liver toxicity at transcriptomic level. Front Pharmacol 2025; 15:1398370. [PMID: 39926256 PMCID: PMC11802568 DOI: 10.3389/fphar.2024.1398370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Drug-induced liver injury (DILI) has been investigated at the patient level. Analysis of gene perturbation at the cellular level can help better characterize biological mechanisms of hepatotoxicity. Despite accumulating drug-induced transcriptome data such as LINCS, analyzing such transcriptome data upon drug treatment is a challenging task because the perturbation of expression is dose and time dependent. In addition, the mechanisms of drug toxicity are known only as literature information, not in a computable form. Methods To address these challenges, we propose a Multi-Dimensional Transcriptomic Ruler (MDTR) that quantifies the degree of DILI at the transcriptome level. To translate transcriptome data to toxicity-related mechanisms, MDTR incorporates KEGG pathways as representatives of mechanisms, mapping transcriptome data to biological pathways and subsequently aggregating them for each of the five hepatotoxicity mechanisms. Given that a single mechanism involves multiple pathways, MDTR measures pathway-level perturbation by constructing a radial basis kernel-based toxicity space and measuring the Mahalanobis distance in the transcriptomic kernel space. Representing each mechanism as a dimension, MDTR is visualized in a radar chart, enabling an effective visual presentation of hepatotoxicity at transcriptomic level. Results and Discussion In experiments with the LINCS dataset, we show that MDTR outperforms existing methods for measuring the distance of transcriptome data when describing for dose-dependent drug perturbations. In addition, MDTR shows interpretability at the level of DILI mechanisms in terms of the distance, i.e., in a metric space. Furthermore, we provided a user-friendly and freely accessible website (http://biohealth.snu.ac.kr/software/MDTR), enabling users to easily measure DILI in drug-induced transcriptome data.
Collapse
Affiliation(s)
- Inyoung Sung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Seoul, Republic of Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhao Y, Park JY, Yang D, Zhang M. A computational framework to in silico screen for drug-induced hepatocellular toxicity. Toxicol Sci 2024; 201:14-25. [PMID: 38902949 PMCID: PMC11347774 DOI: 10.1093/toxsci/kfae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Drug-induced liver injury (DILI) is the most common trigger for acute liver failure and the leading cause of attrition in drug development. In this study, we developed an in silico framework to screen drug-induced hepatocellular toxicity (INSIGHT) by integrating the post-treatment transcriptomic data from both rodent models and primary human hepatocytes. We first built an early prediction model using logistic regression with elastic net regularization for 123 compounds and established the INSIGHT framework that can screen for drug-induced hepatotoxicity. The 235 signature genes identified by INSIGHT were involved in metabolism, bile acid synthesis, and stress response pathways. Applying the INSIGHT to an independent transcriptomic dataset treated by 185 compounds predicted that 27 compounds show a high DILI risk, including zoxazolamine and emetine. Further integration with cell image data revealed that predicted compounds with high DILI risk can induce abnormal morphological changes in the endoplasmic reticulum and mitochondrion. Clustering analysis of the treatment-induced transcriptomic changes delineated distinct DILI mechanisms induced by these compounds. Our study presents a computational framework for a mechanistic understanding of long-term liver injury and the prospective prediction of DILI risk.
Collapse
Affiliation(s)
- Yueshan Zhao
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Ji Youn Park
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Da Yang
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Min Zhang
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
3
|
Lus G, Bassano MA, Brescia Morra V, Bonavita S, Gallo A, Maimone D, Malerba L, Maniscalco GT, Saccà F, Salemi G, Turrini R, Cottone S, Sessa E, Buccafusca M, Grimaldi LME. Unmet needs and gaps in the identification of secondary progression in multiple sclerosis: a Southern Italy healthcare professionals' perspective. Neurol Sci 2023; 44:45-58. [PMID: 36114980 PMCID: PMC9483292 DOI: 10.1007/s10072-022-06402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic disease with different clinical courses and a tendency to worsening. The relapsing-remitting MS presents acute onset and relapses of neurological symptoms, followed by their remission. This form can convert to secondary progressive MS (SPMS) with irreversible neurological worsening and disability. The identification of signs, symptoms, markers of progression, and strategies to manage MS patients is mandatory to allow early identification of those at higher risk of conversion to SPMS, for prompt intervention to cope with the progression of the disease. METHODS A panel of Italian experts from Southern Italy have reviewed the current knowledge on MS and its management and identified the crucial tools for SPMS recognition. RESULTS More effective communication between patients and clinicians should be established, with the support of digital tools. Moreover, the improvement in the clinical use of biomarkers for progression (cellular structures and tissue organization, such as neurofilaments and chitinase 3-like 1, axonal and neurons density) and of instrumental analyses for recognition of whole-brain atrophy, chronic active lesions, spinal cord lesions and atrophy, and the improvement the combination of the Expanded Disability Status Scale and the evaluation of cognitive dysfunction are discussed. CONCLUSION Given the availability of a pharmacological option, adequate education both for patients, regarding the evolution of the disease and the specific treatment, and for professionals, to allow more effective and sensitive communication and the best use of diagnostic and management tools, could represent a strategy to improve patient management and their quality of life.
Collapse
Affiliation(s)
- Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, II Division of Neurology, Multiple Sclerosis Center, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Vincenzo Brescia Morra
- Department of Neurosciences Reproductive Sciences and Odontostomatology, Multiple Sclerosis Center, Federico II University, Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, Università Della Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, Università Della Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Maimone
- Unità Operativa Complessa Neurology, Multiple Sclerosis Center, ARNAS Garibaldi, Catania, Italy
| | | | | | - Francesco Saccà
- Department of Neurosciences Reproductive Sciences and Odontostomatology, Multiple Sclerosis Center, Federico II University, Naples, Italy
| | - Giuseppe Salemi
- UOC of Neurology and Multiple Sclerosis Center, DAI of Diagnostic and Interventistic Radiology and Stroke, AOIP "P. Giaccone", Palermo, Italy
| | | | - Salvatore Cottone
- Neurology and Stroke Unit, Multiple Sclerosis Center, ARNAS CIVICO, Palermo, Italy
| | - Edoardo Sessa
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Maria Buccafusca
- Neurology and Neuromuscular Unit, Multiple Sclerosis Centre, "G. Martino" University Hospital, Messina, Italy
| | - Luigi Maria Edoardo Grimaldi
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute "G. Giglio", Cefalù, PA, Italy
| |
Collapse
|
4
|
Reis-Mendes A, Dores-Sousa JL, Padrão AI, Duarte-Araújo M, Duarte JA, Seabra V, Gonçalves-Monteiro S, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. Pharmaceuticals (Basel) 2021; 14:510. [PMID: 34073506 PMCID: PMC8229902 DOI: 10.3390/ph14060510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mitoxantrone (MTX) is a pharmaceutical drug used in the treatment of several cancers and refractory multiple sclerosis (MS). Despite its therapeutic value, adverse effects may be severe, namely the frequently reported cardiotoxicity, whose mechanisms need further research. This work aimed to assess if inflammation or oxidative stress-related pathways participate in the cardiotoxicity of MTX, using the mouse as an animal model, at two different age periods (infant or adult mice) using two therapeutic relevant cumulative doses. Histopathology findings showed that MTX caused higher cardiac toxicity in adults. In MTX-treated adults, at the highest dose, noradrenaline cardiac levels decreased, whereas at the lowest cumulative dose, protein carbonylation increased and the expression of nuclear factor kappa B (NF-κB) p65 subunit and of M1 macrophage marker increased. Moreover, MTX-treated adult mice had enhanced expression of NF-κB p52 and tumour necrosis factor (TNF-α), while decreasing interleukin-6 (IL-6). Moreover, while catalase expression significantly increased in both adult and infant mice treated with the lowest MTX cumulative dose, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase only significantly increased in infant animals. Nevertheless, the ratio of GAPDH to ATP synthase subunit beta decreased in adult animals. In conclusion, clinically relevant doses of MTX caused dissimilar responses in adult and infant mice, being that inflammation may be an important trigger to MTX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - José Luís Dores-Sousa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, University of Porto, 4050-313 Porto, Portugal;
- Department of Immune-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Paredes, Portugal;
| | - Vítor Seabra
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Paredes, Portugal;
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- MOREHealth, Outcomes Research Lab, Portuguese Institute of Oncology at Porto Francisco Gentil (IPO Porto), 4200-072 Porto, Portugal
| | - Fernando Remião
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| |
Collapse
|
5
|
Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2021; 41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The zebrafish has emerged as a powerful vertebrate model for studying liver-associated disorders. Liver damage is a crucial problem in the process of drug development and zebrafish have proven to be an important tool for the high-throughput screening of drugs for hepatotoxicity. Although the structure of the zebrafish liver differs to that of mammals, the fundamental physiologic processes, genetic mutations and manifestations of pathogenic responses to environmental insults exhibit much similarity. The larval transparency of the zebrafish is a great advantage for real-time imaging in hepatic studies. The zebrafish has a broad spectrum of cytochrome P450 enzymes, which enable the biotransformation of drugs via similar pathways as mammals, including oxidation, reduction and hydrolysis reactions. In the present review, we appraise the various drugs, chemicals and toxins used to study liver toxicity in zebrafish and their similarities to the rodent models for liver-related studies. Interestingly, the zebrafish has also been effectively used to study the pathophysiology of nonalcoholic and alcoholic fatty liver disease. The genetic models of liver disorders and their easy manipulation provide great opportunity in the area of drug development. The zebrafish has proven to be an influential model for the hepatic system due to its invertebrate-like advantages coupled with its vertebrate biology. The present review highlights the pivotal role of zebrafish in bridging the gap between cell-based and mammalian models.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
6
|
Mitoxantrone-Loaded Nanoparticles for Magnetically Controlled Tumor Therapy-Induction of Tumor Cell Death, Release of Danger Signals and Activation of Immune Cells. Pharmaceutics 2020; 12:pharmaceutics12100923. [PMID: 32992645 PMCID: PMC7599695 DOI: 10.3390/pharmaceutics12100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Stimulating the patient’s immune system represents a promising therapeutic strategy to fight cancer. However, low immunogenicity of the tumor cells within an immune suppressive milieu often leads to weak anti-tumor immune responses. Additionally, the immune system may be impaired by accompanying aggressive chemotherapies. We show that mitoxantrone, bound to superparamagnetic iron oxide nanoparticles (SPIONs) as the transport system, can be magnetically accumulated in adherent HT-29 colon carcinoma cells, thereby inducing the same cell death phenotype as its soluble counterpart, a chemotherapeutic agent and prototypic inductor of immunogenic cell death. The nanoparticle-loaded drug induces cell cycle stop, apoptosis and secondary necrosis in a dose- and time-dependent manner comparable to the free drug. Cell death was accompanied by the release of interleukin-8 and damage-associated molecular patterns (DAMPs) such as HSP70 and ATP, which fostered chemotactic migration of monocytes and maturation of dendritic cells. We furthermore ensured absence of endotoxin contaminations and compatibility with erythrocytes and platelets and investigated the influence on plasma coagulation in vitro. Summarizing, with magnetic enrichment, mitoxantrone can be accumulated at the desired place, sparing healthy peripheral cells and tissues, such as immune cells. Conserving immune competence in cancer patients in the future might allow combined therapeutic approaches with immune therapies (e.g., checkpoint inhibitors).
Collapse
|
7
|
Rocha-Pereira C, Silva V, Costa VM, Silva R, Garcia J, Gonçalves-Monteiro S, Duarte-Araújo M, Santos-Silva A, Coimbra S, Dinis-Oliveira RJ, Lopes C, Silva P, Long S, Sousa E, de Lourdes Bastos M, Remião F. Histological and toxicological evaluation, in rat, of a P-glycoprotein inducer and activator: 1-(propan-2-ylamino)-4-propoxy-9 H-thioxanthen-9-one (TX5). EXCLI JOURNAL 2019; 18:697-722. [PMID: 31611753 PMCID: PMC6785774 DOI: 10.17179/excli2019-1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter involved in the efflux of numerous compounds that influences the pharmacokinetics of xenobiotics. It reduces intestinal absorption and exposure of target cells to toxicity. Thioxanthones are compounds able to induce and/or activate P-gp in vitro. Particularly, 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) behaves as a P-gp inducer and activator in vitro. The aims of this study were: i) to perform a histological characterization, by testing a single high dose of TX5 [30 mg/kg, body weight (b.w.), gavage], administered to Wistar Han rats, 24 hours after administration; and ii) to perform both a complete histological characterization and a preliminary safety evaluation, in distinct target organs, 24 hours after administration of a single lower dose of TX5 (10 mg/kg, b.w., gavage) to Wistar Han rats. The results showed a relevant histological toxicity for the higher dose of TX5 administered (30 mg/kg, b.w.), manifested by extensive hepatic necrosis and splenic toxicity (parenchyma with hyperemia, increased volume of both white and red pulp, increased follicles marginal zone). Moreover, in the kidneys, a slight hyperemia and tubular edema were observed in TX5-treated animals, as well as an inflammation of the small intestine. On the contrary, for the lower tested dose (10 mg/kg, b.w.), we did not observe any relevant histological toxicity in the evaluated organs. Additionally, no significant differences were found in the ATP levels between TX5-exposed and control animals in any of the evaluated organs, with the exception of the intestine, where ATP levels were significantly higher in TX5-treated rats. Similarly, TX5 caused a significant increase in the ratio GSH/GSSG only in the lungs. TX5 (10 mg/kg, b.w.) did not induce any change in any of the hematological and biochemical circulating evaluated parameters. However, TX5 was able to significantly reduce the activated partial thromboplastin time, without affecting the prothrombin time. The urine biochemical analysis revealed a TX5-mediated increase in both creatinine and sodium. Taken together, our results show that TX5, at a dose of 10 mg/kg, does not induce considerable toxicity in the biological matrices studied. Given this adequate safety profile, TX5 becomes a particularly interesting compound for ex vivo and in vivo studies, regarding the potential for induction and activation of P-gp at the intestinal barrier.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Juliana Garcia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.,Departamento de Saúde Pública e Ciências Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Lopes
- Molecular Oncology and Viral Pathology Group, Centro de Investigação do IPO-Porto
| | - Paula Silva
- Departamento de Microscopia, Laboratório de Histologia e Embriologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Solida Long
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Toxicity Evaluation and Biomarker Selection with Validated Reference Gene in Embryonic Zebrafish Exposed to Mitoxantrone. Int J Mol Sci 2018; 19:ijms19113516. [PMID: 30413070 PMCID: PMC6274943 DOI: 10.3390/ijms19113516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Notwithstanding the widespread use and promising clinical value of chemotherapy, the pharmacokinetics, toxicology, and mechanism of mitoxantrone remains unclear. To promote the clinical value in the treatment of human diseases and the exploration of potential subtle effects of mitoxantrone, zebrafish embryos were employed to evaluate toxicity with validated reference genes based on independent stability evaluation programs. The most stable and recommended reference gene was gapdh, followed by tubα1b, for the 48 h post fertilization (hpf) zebrafish embryo mitoxantrone test, while both eef1a1l1 and rpl13α were recommended as reference genes for the 96 hpf zebrafish embryo mitoxantrone test. With gapdh as an internal control, we analyzed the mRNA levels of representative hepatotoxicity biomarkers, including fabp10a, gclc, gsr, nqo1, cardiotoxicity biomarker erg, and neurotoxicity biomarker gfap in the 48 hpf embryo mitoxantrone test. The mRNA levels of gclc, gsr, and gfap increased significantly in 10 and 50 μg/L mitoxantrone-treated 48 hpf embryos, while the transcript levels of fabp10a decreased in a dose-dependent manner, indicating that mitoxantrone induced hepatotoxicity and neurotoxicity. Liver hematoxylin–eosin staining and the spontaneous movement of embryos confirmed the results. Thus, the present research suggests that mitoxantrone induces toxicity during the development of the liver and nervous system in zebrafish embryos and that fabp10a is recommended as a potential biomarker for hepatotoxicity in zebrafish embryos. Additionally, gapdh is proposed as a reference gene for the 48 hpf zebrafish embryo mitoxantrone toxicity test, while eef1a1l1 and rpl13α are proposed as that for the 96 hpf test.
Collapse
|
9
|
Guissi NEI, Li H, Xu Y, Semcheddine F, Chen M, Su Z, Ping Q. Mitoxantrone- and Folate-TPGS2k Conjugate Hybrid Micellar Aggregates To Circumvent Toxicity and Enhance Efficiency for Breast Cancer Therapy. Mol Pharm 2017; 14:1082-1094. [DOI: 10.1021/acs.molpharmaceut.6b01009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nida El Islem Guissi
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- Department
of Pharmacy, Faculty of Medicine, Ferhat Abbas University, Setif 19000, Algeria
| | - Huipeng Li
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yurui Xu
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Farouk Semcheddine
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, China
| | - Minglei Chen
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Zhigui Su
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Qineng Ping
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Couto D, Freitas M, Costa VM, Chisté RC, Almeida A, Lopez-Quintela MA, Rivas J, Freitas P, Silva P, Carvalho F, Fernandes E. Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity. J Appl Toxicol 2016; 36:1321-1331. [PMID: 27102234 DOI: 10.1002/jat.3323] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/30/2023]
Abstract
Iron oxide nanoparticles (IONs) have physical and chemical properties that render them useful for several new biomedical applications. Still, so far, in vivo safety studies of IONs with coatings of biomedical interest are still scarce. The aim of this study, therefore, was to clarify the acute biological effects of polyacrylic acid (PAA)-coated IONs, by determining their biodistribution and their potential proinflammatory and toxic effects in CD-1 mice. The biodistribution of PAA-coated IONs in several organs (liver, spleen, kidneys, brain, heart, testes and lungs), the plasma cytokines, chemokine and aminotransferases levels, white blood cell count, oxidative stress parameters, adenosine triphosphate and histologic features of liver, spleen and kidneys were evaluated 24 h after a single acute (8, 20 or 50 mg kg(-1) ) intravenous administration of PAA-coated IONs in magnetite form. The obtained results showed that these IONs accumulate mainly in the liver and spleen and, to a lesser extent, in the lungs. Although our data showed that PAA-coated IONs do not cause severe organ damage, an inflammatory process was triggered in vivo, as evidenced by as evidenced by increased neutrophils and large lymphocytes in the differential blood count. Moreover, an accumulation of iron in macrophages of the liver and spleen was observed and hepatic lipid peroxidation was elicited, showing that the IONs are able to induce oxidative stress. The effects of these nanoparticles need to be further investigated regarding the mechanisms involved and the long-term consequences of intravenous administration of PAA-coated IONs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diana Couto
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Renan Campos Chisté
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Agostinho Almeida
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Arturo Lopez-Quintela
- Laboratory of Nanotechnology and Magnetism, Institute of Technological Research, IIT, University of Santiago de Compostela (USC), Spain
| | - José Rivas
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paula Silva
- UCIBIO-REQUIMTE, Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Song N, Zhao M, Wang Y, Hu X, Wu J, Jiang X, Li S, Cui C, Peng S. Nanomedical strategy to prolong survival period, heighten cure rate, and lower systemic toxicity of S180 mice treated with MTX/MIT. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2701-11. [PMID: 27621591 PMCID: PMC5012610 DOI: 10.2147/dddt.s113804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)-MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN-MTX. The loading of MIT into the surface pores of MSNN-MTX produced nanostructured MSNN-MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN-MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN-MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN-MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively.
Collapse
Affiliation(s)
- Ning Song
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Xi Hu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Xueyun Jiang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Shan Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Chunying Cui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences of Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Dores-Sousa JL, Duarte JA, Seabra V, Bastos MDL, Carvalho F, Costa VM. The age factor for mitoxantrone's cardiotoxicity: multiple doses render the adult mouse heart more susceptible to injury. Toxicology 2015; 329:106-119. [PMID: 25582955 DOI: 10.1016/j.tox.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/04/2015] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
Age is a known susceptibility factor for the cardiotoxicity of several anticancer drugs, including mitoxantrone (MTX). The impact of anticancer drugs in young patients is underestimated, thus we aimed to evaluate the cardiotoxicity of MTX in juvenile and adult animals. Juvenile (3 week-old) and adult (8-10 week-old) male CD-1 mice were used. Each group was treated with a 9.0mg/kg cumulative dose of MTX or saline; they were maintained in a drug-free period for 3-weeks after the last administration to allow the development of late toxicity (protocol 1), or sacrificed 24h after the last MTX administration to evaluate early cardiotoxicity (protocol 2). In protocol 1, no adult mice survived, while 2 of the juveniles reached the end of the protocol. High plasma aspartate aminotransferase/alanine aminotransferase ratio and a high cardiac reduced/oxidized glutathione ratio were found in the surviving MTX-treated juvenile mice. In protocol 2, a significant decrease in plasma creatine-kinase MB in juveniles was found 24h after the last MTX-administration. Cardiac histology showed that both MTX-treated populations had significant damage, although higher in adults. However, MTX-treated juveniles had a significant increase in fibrotic tissue. The MTX-treated adults had higher values of cardiac GSSG and protein carbonylation, but lower cardiac noradrenaline levels. For the first time, mature adult animals were shown to be more susceptible to MTX as evidenced by several biomarkers, while young animals appear to better adjust to the MTX-induced cardiac injury. Even so, the higher level of fibrotic tissue and the histological damage showed that MTX also causes cardiac damage in the juvenile population.
Collapse
Affiliation(s)
- José Luís Dores-Sousa
- UCBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | | | - Vítor Seabra
- Departamento de Ciências Farmacêuticas, CESPU, Instituto Superior de Ciências da Saúde do Norte, ISCS-N, Paredes, Portugal
| | - Maria de Lourdes Bastos
- UCBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Félix Carvalho
- UCBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Vera Marisa Costa
- UCBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|