1
|
Díaz-Carrasco MS, Sánchez-Salinas A, Fernández-Ávila JJ, Olmos-Jiménez R, Español-Morales I, Espuny-Miró A. Prospective observational study of oral clonazepam to prevent high-dose busulfan-induced seizures in adult patients. J Egypt Natl Canc Inst 2025; 37:4. [PMID: 39894848 DOI: 10.1186/s43046-025-00257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Busulfan at high doses has been associated with a risk of seizures. Phenytoin has been used traditionally as anti-seizure prophylaxis, and benzodiazepines and levetiracetam have been introduced more recently, providing data from retrospective series. The main purpose of this study was to evaluate the effectiveness of oral clonazepam as anti-seizure prophylaxis in adult patients receiving high doses of intravenous busulfan as part of the conditioning regimen for hematopoietic stem cell transplantation. The secondary objectives were to determine the feasibility of this regimen and to analyze the adverse events associated with the use of clonazepam. METHODS This prospective, single-center study included 64 adult patients who received conditioning regimens with high doses of intravenous busulfan and anti-seizure prophylaxis with oral clonazepam, at a dose of 1 mg/8 h, from 12 h before starting treatment with busulfan until 48 h after ending administration. RESULTS The effectiveness of the prophylaxis was 100%, with no episodes of seizures during busulfan treatment or in the 72 h afterwards. Treatment was feasible, and oral scheduled administration was completed in all patients. Adverse events that could be associated with clonazepam included the onset of somnolence, dizziness, and confusion, mostly mild. CONCLUSION The oral clonazepam regimen described in this study has been prospectively shown to be an effective, feasible anti-seizure prophylaxis option with manageable toxicity.
Collapse
|
2
|
Aloke C, Onisuru OO, Achilonu I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem Biophys Res Commun 2024; 734:150774. [PMID: 39366175 DOI: 10.1016/j.bbrc.2024.150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The dynamic and versatile group of enzymes referred to as glutathione S-transferases (GSTs) play diverse roles in cellular detoxification, safeguarding hosts from oxidative damage, and performing various other functions. This review explores different classes of GST, existence of polymorphisms in GST, functions of GST and utilizations of GST inhibitors in treatment of human diseases. The study indicates that the cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and bacterial proteins that provide resistance to Fosfomycin are the major classes. Given a GST, variation in its expression and function among individuals is due to the presence of polymorphic alleles that encode it. Genetic polymorphism might result in the modification of GST activity, thereby increasing individuals' vulnerability to harmful chemical compounds. GSTs have been demonstrated to play a regulatory function in cellular signalling pathways through kinases, S-Glutathionylation, and in detoxification processes. Various applications of bacterial GSTs and their potential roles in plants were examined. Targeting GSTs, especially GSTP1-1, is considered a potential therapeutic strategy for treating cancer and diseases linked to abnormal cell proliferation. Their role in cancer cell growth, differentiation, and resistance to anticancer agents makes them promising targets for drug development, offering prospects for the future.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
3
|
Castelli S, Thorwarth A, van Schewick C, Wendt A, Astrahantseff K, Szymansky A, Lodrini M, Veldhoen S, Gratopp A, Mall MA, Eggert A, Deubzer HE. Management of Busulfan-Induced Lung Injury in Pediatric Patients with High-Risk Neuroblastoma. J Clin Med 2024; 13:5995. [PMID: 39408056 PMCID: PMC11477708 DOI: 10.3390/jcm13195995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Integrating the cytotoxic drug busulfan into a high-dose chemotherapy regimen prior to autologous hematopoietic stem cell rescue in patients with high-risk neuroblastoma has improved the survival of children battling this deadly disease. Busulfan-induced toxicities can, however, be severe. Here, we describe the diagnosis and successful treatment of acute pulmonary injury by total-body-weight-adjusted busulfan therapy in two children with high-risk neuroblastoma. Case series: Patient 1 developed life-threatening biphasic acute respiratory failure on days +60 and +100 after busulfan therapy, requiring intubation and invasive mechanical ventilation. Despite intensive anti-inflammatory and immunomodulatory therapy, including systemic corticosteroids, topical inhalation regimens, azithromycin, nintedanib and extracorporal photopheresis, patient 1 required extended intensive care measures and non-invasive respiratory support for a total of 20 months. High-resolution computed tomography showed diffuse intra-alveolar and interstitial patterns. Patient 2 developed partial respiratory failure with insufficient oxygen saturation and dyspnea on day +52 after busulfan therapy. Symptoms were resolved after 6 months of systemic corticosteroids, topical inhalation regimens and azithromycin. High-resolution computed tomography showed atypical pneumonic changes with ground-glass opacities. While both patients fully recovered without evidence of pulmonary fibrosis, cancer therapy had to be paused and then modified until full recovery from busulfan-induced lung injury. Conclusions: Busulfan-induced lung injury requires prompt diagnosis and intervention. Symptoms and signs are nonspecific and difficult to differentiate from other causes. Therapeutic busulfan drug level monitoring and the identification of patients at risk for drug overdosing through promoter polymorphisms in the glutathione S-transferase alpha 1 gene encoding the main enzyme in busulfan metabolism are expected to reduce the risk of busulfan-induced toxicities.
Collapse
Affiliation(s)
- Sveva Castelli
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Anne Thorwarth
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Claudia van Schewick
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Anke Wendt
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Simon Veldhoen
- Department of Pediatric Radiology, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Gratopp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Lung Research (DLZ), Associated Partner Site Berlin, 89337 Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, 89337 Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (S.C.); (A.S.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité and Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
4
|
Evangelidis P, Evangelidis N, Kalmoukos P, Kourti M, Tragiannidis A, Gavriilaki E. Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill. Curr Issues Mol Biol 2024; 46:4787-4802. [PMID: 38785556 PMCID: PMC11119915 DOI: 10.3390/cimb46050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Maria Kourti
- 3rd Department of Pediatrics, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| |
Collapse
|
5
|
Ben Hassine K, Seydoux C, Khier S, Daali Y, Medinger M, Halter J, Heim D, Chalandon Y, Schanz U, Nair G, Cantoni N, Passweg JR, Satyanarayana Uppugunduri CR, Ansari M. Pharmacokinetic Modeling and Simulation with Pharmacogenetic Insights Support the Relevance of Therapeutic Drug Monitoring for Myeloablative Busulfan Dosing in Adult HSCT. Transplant Cell Ther 2024; 30:332.e1-332.e15. [PMID: 38081414 DOI: 10.1016/j.jtct.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
Therapeutic drug monitoring (TDM) of busulfan (Bu) is well-established in pediatric hematopoietic stem cell transplantation (HSCT), but its use in adults is limited due to a lack of clear recommendations and scarcity of evidence regarding its utility. GSTA1 promoter variants are reported to affect Bu clearance in both adults and pediatric patients. This study aimed to evaluate the value of preemptive genotyping GSTA1 and body composition (obesity) in individualizing Bu dosing in adults, through pharmacokinetic (PK) modeling and simulations. A population pharmacokinetic (PopPK) model was developed and validated with data from 60 adults who underwent HSCT. Simulations assessed different dosing scenarios based on body size metrics and GSTA1 genotypes. Due to the limited number of obese patients in the cohort, the effect of obesity on Bu pharmacokinetics (PK) was evaluated in silico using a physiologically-based pharmacokinetic (PBPK) model and relevant virtual populations from Simcyp software. Patients with at least 1 GSTA1*B haplotype had 17% lower clearance on average. PopPK simulations indicated that adjusting doses based on genotype increased the probability of achieving the target exposure (3.7 to 5.5 mg.h/L) from 53% to 60 % in GSTA1*A homozygous patients, and from 50% to 61% in *B carriers. Still, Approximately 40% of patients would not achieve this therapeutic window without TDM. A 2-sample optimal design was validated for routine model-based Bu first dose AUC0-∞ estimation, and the model was implemented in the Tucuxi user-friendly TDM software. PBPK simulations confirmed body surface area-based doses of 29 to 31 mg/m2/6h as the most appropriate, regardless of obesity status. This study emphasizes the importance of individualized Bu dosing strategies in adults to achieve therapeutic targets. Preemptive genotyping alone may not have a significant clinical impact, and routine TDM may be necessary for optimal transplantation outcomes.
Collapse
Affiliation(s)
- Khalil Ben Hassine
- Department of Pediatrics, Gynecology and Obstetrics, Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Seydoux
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Sonia Khier
- Pharmacokinetic and Modeling Department, School of Pharmacy, Montpellier University, Montpellier, France; Probabilities and Statistics Department, Institut Montpelliérain Alexander Grothendieck (IMAG), CNRS, UMR 5149, Inria, Montpellier University, Montpellier, France
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, University Hospital of Geneva, Geneva, Switzerland; Faculty of Medicine & Sciences, University of Geneva, Geneva, Switzerland
| | - Michael Medinger
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Joerg Halter
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Dominik Heim
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Nathan Cantoni
- Division of Oncology, Hematology and Transfusion Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Chakradhara Rao Satyanarayana Uppugunduri
- Department of Pediatrics, Gynecology and Obstetrics, Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Ansari
- Department of Pediatrics, Gynecology and Obstetrics, Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland.
| |
Collapse
|
6
|
Allard J, Bucher S, Ferron PJ, Launay Y, Fromenty B. Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury. Fundam Clin Pharmacol 2024; 38:152-167. [PMID: 37665028 DOI: 10.1111/fcp.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Julien Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| |
Collapse
|
7
|
Bognàr TT, Kingma JSJ, Smeijsters EHE, van der Elst KCMK, de Kanter CTMK, Lindemans CAC, Egberts ACGT, Bartelink IHI, Lalmohamed AA. Busulfan target exposure attainment in children undergoing allogeneic hematopoietic cell transplantation: a single day versus a multiday therapeutic drug monitoring regimen. Bone Marrow Transplant 2023; 58:762-768. [PMID: 37002411 DOI: 10.1038/s41409-023-01971-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Busulfan exposure has previously been linked to clinical outcomes, hence the need for therapeutic drug monitoring (TDM). Study objective was to evaluate the effect of day 1 TDM-guided dosing (regimen d1) versus days 1 + 2 TDM-guided dosing (regimen d1 + 2) on attaining adequate busulfan exposure. In this observational study, we included all children receiving busulfan-based allogeneic hematopoietic cell transplantation. Primary outcome was the percentage of patients achieving busulfan target attainment in both TDM regimens. Secondary outcomes were the variance in busulfan exposure and day-4 clearance (Clday4) estimates between both TDM regimens and dosing day 1 and 2. In regimen d1, 84.3% (n = 91/108) attained a therapeutic busulfan exposure, while in regimen d1 + 2 a proportion of 90.9% was found (n = 30/33, not-significant). Variance of Clday4 estimate based on busulfan day 2 concentrations was significantly smaller than the variance of Clday4 estimates based on day 1 concentrations (p < 0.001). Therefore, day 1-guided TDM (pharmacometric model-based) of busulfan may be sufficient for attaining optimal target exposure, provided that subsequent TDM is carried out if required. However, performing TDM on subsequent days may be beneficial, as measurements on day 2 seemed to reduce the variance in the estimated clearance as compared to day 1 sampling.
Collapse
Affiliation(s)
- T Tim Bognàr
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands.
| | - J S Jurjen Kingma
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - E H Erin Smeijsters
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - K C M Kim van der Elst
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | - C A Caroline Lindemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatrics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - A C G Toine Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - I H Imke Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - A Arief Lalmohamed
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Seydoux C, Uppugunduri CRS, Medinger M, Nava T, Halter J, Heim D, Chalandon Y, Schanz U, Nair G, Cantoni N, Passweg JR, Ansari M. Effect of pharmacokinetics and pharmacogenomics in adults with allogeneic hematopoietic cell transplantation conditioned with Busulfan. Bone Marrow Transplant 2023; 58:811-816. [PMID: 37085674 PMCID: PMC10325946 DOI: 10.1038/s41409-023-01963-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/23/2023]
Abstract
Busulfan (Bu) combined with cyclophosphamide (Cy) is commonly used as a myeloablative conditioning regimen for allogeneic hematopoietic cell transplantation (allo-HCT). There is inter-individual variability of Bu pharmacokinetics (PK) and hence in toxicity and efficacy. The introduction of therapeutic drug monitoring (TDM) of Bu has decreased toxicity of the regimen. Hepatic metabolism of Bu is mediated through Glutathione-S-Transferases (GSTs), mainly GSTA1. Patients with GSTA1*A variants are considered normal metabolizers and GSTA1*B corresponds to poor metabolism, defined by nucleotide changes at -52 or -69 locus in GSTA1 promoter region. The aim of the study was to explore the correlation between GSTA1 polymorphisms and Bu-PK in 60 adult patients receiving an allo-HCT in the BuCyBu clinical study (ClinicalTrials.gov I, ID NCT01779882) comparing the sequence BuCy to CyBu. DNA samples prior to conditioning were genotyped for candidate variants at -52 (rs3957356) and -69 (rs3957357) loci in the GSTA1 promoter. Thirty-three % of patients were GSTA1*A*A, 49% GSTA1*A*B and 18% GSTA1*B*B. In GSTA1*A*A patients, median Bu-AUC was 3.6 ± 0.7 mg*h/L, in GSTA1*A*B 4.5 ± 1.6 and in GSTA1*B*B 4.9 ± 1.4 (AUC 35% higher than GSTA1*A*A, p = 0.03), with a similar significant correlation with Bu-clearance (p = 0.04). The correlation between GSTA1 polymorphism and AUC remained significant in multivariate linear regression analysis. There was a trend for lower non-relapse mortality (NRM) in patients with low AUC. We could not demonstrate a correlation between GSTA1 polymorphisms and NRM, acute graft-versus-host disease (aGvHD) in this small cohort, but there is a trend of higher aGvHD incidence in GSTA1*B*B patients.
Collapse
Affiliation(s)
- Claire Seydoux
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland.
| | - Chakradhara Rao Satyanarayana Uppugunduri
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Michael Medinger
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Tiago Nava
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Joerg Halter
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Dominik Heim
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Nathan Cantoni
- Division of Oncology, Hematology and Transfusion Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Basel, Basel, Switzerland and University Basel, Basel, Switzerland
| | - Marc Ansari
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Morris SA, Nguyen DG, Patel JN. Pharmacogenomics in allogeneic hematopoietic stem cell transplantation: Implications on supportive therapies and conditioning regimens. Best Pract Res Clin Haematol 2023; 36:101470. [PMID: 37353294 DOI: 10.1016/j.beha.2023.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation mortality has declined over the years, though prevention and management of treatment-related toxicities and post-transplant complications remains challenging. Applications of pharmacogenomic testing can potentially mitigate adverse drug outcomes due to interindividual variability in drug metabolism and response. This review summarizes clinical pharmacogenomic applications relevant to hematopoietic stem cell transplantation, including antifungals, immunosuppressants, and supportive care management, as well as emerging pharmacogenomic evidence with conditioning regimens.
Collapse
Affiliation(s)
- Sarah A Morris
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - D Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| |
Collapse
|
10
|
Combarel D, Tran J, Delahousse J, Vassal G, Paci A. Individualizing busulfan dose in specific populations and evaluating the risk of pharmacokinetic drug-drug interactions. Expert Opin Drug Metab Toxicol 2023; 19:75-90. [PMID: 36939456 DOI: 10.1080/17425255.2023.2192924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Busulfan is an alkylating agent widely used in the conditioning of hematopoietic stem cell transplantation possessing a complex metabolism and a large interindividual and intra-individual variability, especially in children. Combined with the strong rationale of busulfan PK/PD relationships, factors altering its clearance (e.g., weight, age, and GST-A genetic polymorphism mainly) can also affect clinical outcomes. AREAS COVERED This review aims to provide an overview of the current knowledge on busulfan pharmacokinetics, its pharmacokinetics variabilities in pediatric populations, drug-drug interactions (DDI), and their consequences regarding dose individualization. This review was based on medical literature up until October 2021. EXPERT OPINION To ensure effective busulfan exposure in pediatrics, different weight-based nomograms have been established to determine busulfan dosage and provided improved results (65 - 80% of patients correctly exposed). In addition to nomograms, therapeutic drug monitoring (TDM) of busulfan measuring plasmatic concentrations to estimate busulfan pharmacokinetic parameters can be used. TDM is now widely carried out in routine practices and aims to ensure the targeting of the reported therapeutic windows by individualizing busulfan dosing based on the clearance estimations from a previous dose.
Collapse
Affiliation(s)
- David Combarel
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Saclay, Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabry, France
| | - Julie Tran
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Julia Delahousse
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Gilles Vassal
- Gustave Roussy Comprehensive Cancer Center, & University Paris-Saclay, Villejuif, France
| | - Angelo Paci
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Saclay, Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
11
|
Smita P, Narayan PA, J K, Gaurav P. Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices. Front Oncol 2022; 12:1015200. [PMID: 36568145 PMCID: PMC9773989 DOI: 10.3389/fonc.2022.1015200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic drugs are highly efficacious and also have low therapeutic index. A great degree of caution needs to be exercised in their usage. To optimize the efficacy these drugs need to be given at maximum tolerated dose which leads to significant amount of toxicity to the patient. The fine balance between efficacy and safety is the key to the success of cytotoxic chemotherapeutics. However, it is possibly more rewarding to obtain that balance for this class drugs as the frequency of drug related toxicities are higher compared to the other therapeutic class and are potentially life threatening and may cause prolonged morbidity. Significant efforts have been invested in last three to four decades in therapeutic drug monitoring (TDM) research to understand the relationship between the drug concentration and the response achieved for therapeutic efficacy as well as drug toxicity for cytotoxic drugs. TDM evolved over this period and the evidence gathered favored its routine use for certain drugs. Since, TDM is an expensive endeavor both from economic and logistic point of view, to justify its use it is necessary to demonstrate that the implementation leads to perceivable improvement in the patient outcomes. It is indeed challenging to prove the utility of TDM in randomized controlled trials and at times may be nearly impossible to generate such data in view of the obvious findings and concern of compromising patient safety. Therefore, good quality data from well-designed observational study do add immense value to the scientific knowledge base, when they are examined in totality, despite the heterogeneity amongst them. This article compiles the summary of the evidence and the best practices for TDM for the three cytotoxic drug, busulfan, 5-FU and methotrexate. Traditional use of TDM or drug concentration data for dose modification has been witnessing a sea change and model informed precision dosing is the future of cytotoxic drug therapeutic management.
Collapse
Affiliation(s)
- Pattanaik Smita
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Patil Amol Narayan
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kumaravel J
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prakash Gaurav
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Du X, Huang C, Xue L, Jiao Z, Zhu M, Li J, Lu J, Xiao P, Zhou X, Mao C, Zhu Z, Dong J, Liu X, Chen Z, Zhang S, Ding Y, Hu S, Miao L. The Correlation Between Busulfan Exposure and Clinical Outcomes in Chinese Pediatric Patients: A Population Pharmacokinetic Study. Front Pharmacol 2022; 13:905879. [PMID: 35784763 PMCID: PMC9243314 DOI: 10.3389/fphar.2022.905879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
Aims: The aims of the study were to 1) establish a population pharmacokinetic (Pop-PK) model for busulfan in Chinese pediatric patients undergoing hematopoietic stem cell transplantation (HSCT) and then estimate busulfan exposure and 2) explore the association between busulfan exposure and clinical outcomes. Methods: A total of 128 patients with 467 busulfan concentrations were obtained for Pop-PK modeling using nonlinear mixed effect model (NONMEM) software. Sixty-three patients who received the 16-dose busulfan conditioning regimen were enrolled to explore the correlations between clinical outcomes and the busulfan area under the concentration–time curve (AUC) using the Cox proportional hazards regression model, Kaplan–Meier method and logistic regression. Results: The typical values for clearance (CL) and distribution volume (V) of busulfan were 7.71 L h−1 and 42.4 L, respectively. The allometric normal fat mass (NFM) and maturation function (Fmat) can be used to describe the variability in CL, and the fat-free mass (FFM) can be used to describe the variability in V. Patients with AUCs of 950–1,600 µM × min had 83.7% (95% CI: 73.3–95.5) event-free survival (EFS) compared with 55.0% (95% CI: 37.0–81.8) for patients with low or high exposure (p = 0.024). The logistic regression analysis results showed no association between transplant-related toxicities and the busulfan AUC (p > 0.05). Conclusions: The variability in busulfan CL was related to the NFM and Fmat, while busulfan V was related to the FFM. Preliminary analysis results suggested that a busulfan AUC of 950–1,600 µM × min was associated with better EFS in children receiving the 16-dose busulfan regimen.
Collapse
Affiliation(s)
- Xiaohuan Du
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, The Children’s Hospital of Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Ling Xue
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Department of Hematology and Oncology, The Children’s Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology and Oncology, The Children’s Hospital of Soochow University, Suzhou, China
| | - Peifang Xiao
- Department of Hematology and Oncology, The Children’s Hospital of Soochow University, Suzhou, China
| | - Xuemei Zhou
- Department of Hematology and Oncology, The Children’s Hospital of Soochow University, Suzhou, China
| | - Chenmei Mao
- Department of Pharmacy, The Children’s Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, The Children’s Hospital of Soochow University, Suzhou, China
| | - Ji Dong
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoxue Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyao Chen
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shichao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiduo Ding
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, The Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Liyan Miao, ; Shaoyan Hu,
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, College of Pharmaceutical Science, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Liyan Miao, ; Shaoyan Hu,
| |
Collapse
|
13
|
Seydoux C, Battegay R, Halter J, Heim D, Rentsch KM, Passweg JR, Medinger M. Impact of busulfan pharmacokinetics on outcome in adult patients receiving an allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2022; 57:903-910. [PMID: 35361896 PMCID: PMC9200635 DOI: 10.1038/s41409-022-01641-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Busulfan (Bu) is widely used in conditioning regimens before allogeneic hematopoietic cell transplantation, with variable metabolism due to interindividual differences of pharmacokinetics (PK). The purpose of this study was to correlate pharmacokinetics and clinical outcomes. Lower-AUC, in range-AUC and higher-AUC were defined as ±25% of the targeted Bu-AUC. In 2019, we changed Bu dosing from 4×/day (Bu-4) to 1×/day (Bu-1) for ease of application. AUC-target range was reached in 46% of patients; 40% were in low-AUC and 14% in high-AUC. Among all toxicities, viral and fungal infections were significantly more frequent in high-AUC compared with low-AUC (20% vs. 8%; p = 0.01 and 37% vs. 17%; p = 0.03). Bu-1 showed lower PK values (66% vs. 36% of Bu-4 in low-AUC; p < 0.01) and higher incidence of mucositis (p = 0.02). Long-term outcomes at 2 years showed a higher non-relapse mortality (NRM) (p < 0.01) and higher relative risk of death in the high-AUC group compared to the other groups. Cumulative incidence of relapse and acute/chronic GvHD were not significantly different. The optimal cut-off in Bu-AUC associated with low NRM was 969 µmol/l*min (ROC AUC 0.67, sensitivity 0.86 and specificity 0.47) for Bu-4. In conclusion, low-AUC BU-PK seems of benefit regarding NRM and survival.
Collapse
Affiliation(s)
- Claire Seydoux
- Division of Hematology, University Hospital of Basel, Basel, Switzerland.
| | - Raphael Battegay
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Joerg Halter
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Dominik Heim
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Katharina M Rentsch
- Department of Laboratory Medicine, University Hospital of Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Michael Medinger
- Division of Hematology, University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Myers AL. VOD/SOS and Alkylating Agents in the Hematopoietic Stem Cell Transplant Setting: New Insights and Further Questions. Transplant Cell Ther 2022; 28:179-180. [PMID: 35365336 DOI: 10.1016/j.jtct.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Alan L Myers
- The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Alsultan A, Albassam AA, Alturki A, Alsultan A, Essa M, Almuzzaini B, Alfadhel S. Can First-Dose Therapeutic Drug Monitoring Predict the Steady State Area Under the Blood Concentration-Time Curve of Busulfan in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation? Front Pediatr 2022; 10:834773. [PMID: 35463912 PMCID: PMC9021690 DOI: 10.3389/fped.2022.834773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Busulfan has high intra-individual variability and possible time-dependent changes in clearance, which complicates therapeutic drug monitoring (TDM), as first dose sampling may not predict the steady state concentrations. In this study, we aimed to use Bayesian pharmacokinetic parameters estimated from the first dose to predict the steady state AUC for busulfan. This observational study was conducted among pediatric patients at King Abdullah Specialist Children's Hospital. From each patient, we collected six blood samples (2, 2.25, 2.5, 3, 4, and 6 h after the start of IV infusion of the first dose). A subset of patients were also sampled at the steady state. First, we modeled the data using only the first dose. The model was used to estimate the empirical Bayesian estimates of clearance for each individual patient, then we used the empirical Bayesian estimates of clearance to predict the AUC0-tau at steady state (i.e., predicted AUC0-tau). Steady state AUC0-tau was also calculated for patients sampled at steady state using the trapezoidal method using raw time concentration data; this was considered the reference AUC0-tau.. Then, we compared the AUC0-tau predicted using the Bayesian approach with the reference AUC0-tau values. We calculated bias and precision to assess predictability. In total we had 33 patients sampled after first dose and at steady state. Using the Bayesian approach to predict the AUC0-tau, bias was -2.8% and precision was 33%. This indicates that first dose concentrations cannot accurately predict steady state busulfan concentrations; therefore, follow-up TDM may be required for optimal dosing.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ahmed A Albassam
- Department of Clinical Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alturki
- Pharmaceutical Analysis Lab-King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Mohammed Essa
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children Hospital, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salman Alfadhel
- Pharmaceutical Analysis Lab-King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Waespe N, Strebel S, Jurkovic Mlakar S, Krajinovic M, Kuehni CE, Nava T, Ansari M. Genetic Predictors for Sinusoidal Obstruction Syndrome-A Systematic Review. J Pers Med 2021; 11:jpm11050347. [PMID: 33925809 PMCID: PMC8145271 DOI: 10.3390/jpm11050347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Sinusoidal obstruction syndrome (SOS) is a potentially life-threatening complication after hematopoietic stem cell transplantation (HSCT) or antineoplastic treatment without HSCT. Genetic variants were investigated for their association with SOS, but the evidence is inconclusive. We performed a systematic literature review to identify genes, gene variants, and methods of association analyses of genetic markers with SOS. We identified 23 studies after HSCT and 4 studies after antineoplastic treatment without HSCT. One study (4%) performed whole-exome sequencing (WES) and replicated the analysis in an independent cohort, 26 used a candidate-gene approach. Three studies included >200 participants (11%), and six were of high quality (22%). Variants in 34 genes were tested in candidate gene studies after HSCT. Variants in GSTA1 were associated with SOS in three studies, MTHFR in two, and CPS1, CTH, CYP2B6, GSTM1, GSTP1, HFE, and HPSE in one study each. UGT2B10 and LNPK variants were identified in a WES analysis. After exposure to antineoplastic agents without HSCT, variants in six genes were tested and only GSTM1 was associated with SOS. There was a substantial heterogeneity of populations within and between studies. Future research should be based on sufficiently large homogenous samples, adjust for covariates, and replicate findings in independent cohorts.
Collapse
Affiliation(s)
- Nicolas Waespe
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Sven Strebel
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland;
- Graduate School for Health Sciences (GHS), University of Bern, 3012 Bern, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Department of Pediatrics, Montreal, QC H3T 1C5, Canada;
- Clinical Pharmacology Unit, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Claudia Elisabeth Kuehni
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland;
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Tiago Nava
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Department of Women, Children and Adolescents, Division of Pediatric Oncology and Hematology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, University of Geneva, 1205 Geneva, Switzerland; (N.W.); (S.S.); (S.J.M.); (T.N.)
- Department of Women, Children and Adolescents, Division of Pediatric Oncology and Hematology, Geneva University Hospital, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-79-553-6100
| |
Collapse
|
17
|
Yuan J, Sun N, Feng X, He H, Mei D, Zhu G, Zhao L. Optimization of Busulfan Dosing Regimen in Pediatric Patients Using a Population Pharmacokinetic Model Incorporating GST Mutations. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:253-268. [PMID: 33623415 PMCID: PMC7894888 DOI: 10.2147/pgpm.s289834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Purpose The aim of this study was to develop a novel busulfan dosing regimen, based on a population pharmacokinetic (PPK) model in Chinese children, and to achieve better area under the concentration-time curve (AUC) targeting. Patients and Methods We collected busulfan concentration-time samples from 69 children who received intravenous busulfan prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). A population pharmacokinetic model for busulfan was developed by nonlinear mixed effect modelling and was validated by an external dataset (n=14). A novel busulfan dosing regimen was developed through simulated patients, and has been verified on real patients. Limited sampling strategy (LSS) was established by Bayesian forecasting. Mean absolute prediction error (MAPE) and relative root mean Squared error (rRMSE) were calculated to evaluate predictive accuracy. Results A one-compartment model with first-order elimination best described the data. GSTA1 genotypes, body surface area (BSA) and aspartate aminotransferase (AST) were found to be significant covariates of Bu clearance, and BSA had significant impact of the volume of distribution. Moreover, two equations were obtained for recommended dose regimens: dose (mg)=34.14×BSA (m2)+3.75 (for GSTA1 *A/*A), Dose (mg)=30.99×BSA (m2)+3.21 (for GSTA1 *A/*B). We also presented a piecewise dosage based on BSA categories for each GSTA1 mutation. A two-point LSS, two hours and four hours after dosing, behaved well with acceptable prediction precision (rRMSE=1.026%, MAPE=6.55%). Conclusion We recommend a GSTA1-BSA and BSA-based dosing (Q6 h) based on a PPK model for personalizing busulfan therapy in pediatric population. Additionally, an optimal LSS (C2h and C4h) provides convenience for therapeutic drug monitoring (TDM) in the future.
Collapse
Affiliation(s)
- Jinjie Yuan
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinying Feng
- Phase I Clinical Trials Centre, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guanghua Zhu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Sun Y, Huang J, Hao C, Li Z, Liang W, Zhang W, Chen B, Yang W, Hu J. Population pharmacokinetic analysis of intravenous busulfan: GSTA1 genotype is not a predictive factor of initial dose in Chinese adult patients undergoing hematopoietic stem cell transplantation. Cancer Chemother Pharmacol 2019; 85:293-308. [PMID: 31834435 DOI: 10.1007/s00280-019-04001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aimed to develop a population pharmacokinetic (PPK) model to investigate the impact of GSTA1, GSTP1, and GSTM1 genotypes on busulfan pharmacokinetic (PK) variability in Chinese adult patients. METHODS Forty-three and 19 adult patients who underwent hematopoietic stem cell transplantation (HSCT) were enrolled for modeling group and validation group, respectively. All patients received twice-daily intravenous busulfan as part of conditioning regimen before HSCT. The PPK model was developed by nonlinear mixed-effect modeling. Covariates investigated were age, sex, actual body weight, body surface area, diagnoses, hepatic function markers, GST genotypes and conditioning regimen. RESULTS A total of 488 busulfan concentrations from 43 patients were obtained for the PPK model. The PK of intravenous busulfan was described by one-compartment model with first-order elimination with estimated clearance (CL) of 14.2 L/h and volume of distribution of 64.1 L. Inclusion of GSTA1 genotype as a covariate accounted for 1.1% of the inter-individual variability of busulfan CL (from 17.8% in the basic model to 16.7% in the final model). The accuracy and applicability of the final model were externally validated in the independent group. The difference of busulfan PK between Chinese patients and Caucasian patients existed because of the rarity of haplotype *B in Chinese population. CONCLUSIONS Although the GSTA1 genotype-based PPK model of intravenous busulfan was successfully developed and externally validated, the GSTA1 genotype was not considered to be clinically relevant to busulfan CL. We did not suggest the guidance of GSTA1 genotype on initial busulfan dose in Chinese adult patients.
Collapse
Affiliation(s)
- Yidan Sun
- Department of Bone Marrow Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 20025, China
| | - Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziwei Li
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wu Liang
- NeoTrident Co. Ltd., Beijing, China
| | - Weixia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Department of Bone Marrow Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, 20025, China.
| |
Collapse
|